Facile Way to Synthesis of Nanocable-like Electrode Materials for High-Performance of Lithium-Ion Batteries

2017 ◽  
Vol 41 (21) ◽  
pp. 12901-12909 ◽  
Author(s):  
Chunfeng Shao ◽  
Ziqiang Wang ◽  
Errui Wang ◽  
Shujun Qiu ◽  
Hailiang Chu ◽  
...  

Guanine was, for the first time, used as a nitrogen source during the synthesis of nitrogen-doped porous carbons (NMCs) with enhanced electrochemical performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 26120-26124 ◽  
Author(s):  
Chunde Wang ◽  
Yinyin Qian ◽  
Jing Yang ◽  
Shiqi Xing ◽  
Xu Ding ◽  
...  

We demonstrate that ternary NiCoP nanoparticles can be self-assembled on graphene at room temperature by a solution-phase method and our electrode materials exhibit a high performance for LIBs and supercapacitors.


Nanoscale ◽  
2019 ◽  
Vol 11 (34) ◽  
pp. 15881-15891 ◽  
Author(s):  
Yong Xu ◽  
Jun Chen ◽  
Ze'en Xiao ◽  
Caixia Ou ◽  
Weixia Lv ◽  
...  

A novel porous diatomite composite electrode composed of NTCDA nanowires exhibits lower charge transfer impedance, higher capacity and better rate performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 33287-33294 ◽  
Author(s):  
Aziz Ahmad ◽  
Haiping Wu ◽  
Yufen Guo ◽  
Qinghai Meng ◽  
Yuena Meng ◽  
...  

Organic electrode materials are promising and future candidates for applications such as cathode in green lithium-ion batteries (LIBs).


2017 ◽  
Vol 19 (38) ◽  
pp. 26322-26329 ◽  
Author(s):  
Haoyue Guo ◽  
Yiman Zhang ◽  
Amy C. Marschilok ◽  
Kenneth J. Takeuchi ◽  
Esther S. Takeuchi ◽  
...  

The interplay among Li, O2−, Fe3+ and Zn2+ enables the high performance of ZnFe2O4 as Lithium ion battery materials.


2021 ◽  
Author(s):  
Xiaoming He ◽  
Xiujuan Wang ◽  
Wenhao Xue ◽  
Guangyuan Gao ◽  
Ling Chen ◽  
...  

Development of novel organics that exhibit multiple and stable redox states, limited solubility and improved conductivity is a highly rewarding direction for improving the performance of lithium-ion batteries (LIBs). As biologically derived organic molecules, carbonylpyridinium compounds have desirable and tunable redox properties, making them suitable candidates for battery applications. In this work, we report a structural evolution of carbonylpyridinium-based redox-active organics, from 2-electron accepting BMP to 4-electron accepting small, conjugated molecules (1, 2), and then to the corresponding conjugated polymers (CP1, CP2). Through suppression of dissolution and increasing electrochemical conductivity, the LIBs performance can be gradually enhanced. At a relatively high current of 0.5 A g-1, high specific capacities for 1 (100 mAh g-1), 2 (260 mAh g-1), CP1 (360 mAh g-1) and CP2 (540 mAh g-1) can be reached after 240 cycles. Particularly, the rate performance and cycling stability of CP2 surpasses many reported commercial inorganic and organic electrode materials. This work provides a promising new carbonylpyridinium-based building block featured with multiple redox centers, on the way to high performance Li-organic batteries.


Sign in / Sign up

Export Citation Format

Share Document