The Effect of Polymeric Binders in the Sulfur Cathode on the Cycling Performance for Lithium-Sulfur Batteries

2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 319-319
Author(s):  
Ji-Yong Eom ◽  
Seong In Kim ◽  
Da-Yeon Lee ◽  
Ji-Hoon Kang
2019 ◽  
Vol 55 (97) ◽  
pp. 14609-14612
Author(s):  
Ji-Yong Eom ◽  
Seong-In Kim ◽  
Vitalii Ri ◽  
Chunjoong Kim

We study the structural and electrochemical performance of sulfur cathodes prepared with two different binders, PVdF and SBR/CMC. Enhanced battery performance is observed in the SBR/CMC-based electrode and its origin is scrutinized.


2018 ◽  
Vol 11 (06) ◽  
pp. 1840001 ◽  
Author(s):  
Fan Wang ◽  
Xinqi Liang ◽  
Minghua Chen ◽  
Xinhui Xia

It is of great importance to develop high-quality carbon/sulfur cathode for lithium-sulfur batteries (LSBs). Herein, we report a facile strategy to embed sulfur into interconnected carbon nanoflake matrix forming integrated electrode. Interlinked carbon nanoflakes have dual roles not only as a highly conductive matrix to host sulfur, but also act as blocking barriers to suppress the shuttle effect of intermediate polysulfides. In the light of these positive characteristics, the obtained carbon nanoflake/S cathode exhibit good LSBs performances with high capacities (1117[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 0.2[Formula: see text]C, and 741[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 0.6[Formula: see text]C) and good high-rate cycling performance. Our synthetic method provides a novel way to construct enhanced carbon/sulfur cathode for LSBs.


2018 ◽  
Vol 5 (8) ◽  
pp. 2013-2017 ◽  
Author(s):  
Kailong Zhang ◽  
Liangbiao Wang ◽  
Wenlong Cai ◽  
Can Wang ◽  
Gaoran Li ◽  
...  

A novel and easy method improves the cycling performance of Li–S batteries by the facile addition of conventional lithium ion cathode materials.


2021 ◽  
pp. 138898
Author(s):  
Mohammad Ramezanitaghartapeh ◽  
Anthony F. Hollenkamp ◽  
Mustafa Musameh ◽  
Peter J. Mahon

2021 ◽  
Vol 285 ◽  
pp. 129115
Author(s):  
Natsuki Nakamura ◽  
Tokihiko Yokoshima ◽  
Hiroki Nara ◽  
Hitoshi Mikuriya ◽  
Ayahito Shiosaki ◽  
...  

2014 ◽  
Vol 1 (6) ◽  
pp. 1086-1086
Author(s):  
Alen Vizintin ◽  
Manu U. M. Patel ◽  
Bostjan Genorio ◽  
Robert Dominko

2019 ◽  
Vol 20 ◽  
pp. 14-23 ◽  
Author(s):  
Xiaoliang Yu ◽  
Jiaojiao Deng ◽  
Ruitao Lv ◽  
Zheng-Hong Huang ◽  
Baohua Li ◽  
...  

2019 ◽  
Vol 39 ◽  
pp. 17-22 ◽  
Author(s):  
Long Kong ◽  
Qi Jin ◽  
Xi-Tian Zhang ◽  
Bo-Quan Li ◽  
Jin-Xiu Chen ◽  
...  

2021 ◽  
Author(s):  
Dongke Zhang ◽  
Ting Huang ◽  
Pengfei Zhao ◽  
Ze Zhang ◽  
Xingtao Qi ◽  
...  

Abstract Due to the low conductivity of sulfur and the dissolution of polysulfides, the research and application of lithium-sulfur (Li-S) batteries have encountered certain resistance. Increasing conductivity and introducing polarity into the sulfur host can effectively overcome these long-standing problems. Herein, We first prepared Co3W3C@ C@ CNTs / S material and used it in the cathode of lithium-sulfur batteries, The existence of carboxylated CNTs can form a conductive network, accelerate the transmission of electrons and improve the rate performance, and polar Co3W3C can form a strong interaction with polysulfide intermediates, effectively inhibiting its shuttle effect, improving the utilization of sulfur cathode electrodes, and improving the capacity and cycle stability. The Co3W3C@C@CNTs / S electrode material has a capacity of 1,093 mA h g-1 at a 0.1 A g− 1 and 482 mA h g-1 at 5 A g− 1. Even after 500 cycles of 2 A g− 1, the capacity of each cycle is only reduced by 0.08%. The excellent stability of this material can provide a new idea for the future development of lithium-sulfur batteries.


Sign in / Sign up

Export Citation Format

Share Document