High-rate and high sulfur-loaded lithium-sulfur batteries with a polypyrrole-coated sulfur cathode on a 3D aluminum foam current collector

2021 ◽  
Vol 285 ◽  
pp. 129115
Author(s):  
Natsuki Nakamura ◽  
Tokihiko Yokoshima ◽  
Hiroki Nara ◽  
Hitoshi Mikuriya ◽  
Ayahito Shiosaki ◽  
...  
Author(s):  
Hiroki Nara ◽  
Tokihiko Yokoshima ◽  
Hitoshi Mikuriya ◽  
Shingo Tsuda ◽  
Tetsuya Osaka

Various types of electroconductive additives were evaluated for high C-rate capability in an attempt to extend practical application of high-areal-capacity lithium–sulfur batteries that employ an aluminum-foam current collector. Carbon nanofibers (CNFs) were found to be the most effective additive, with the ability to attain a high-sulfur-loading of 40 mg cm−2. A CNF-containing cell exhibited gravimetric capacities of 1094 and 758 mAh gsulfur−1 (46.8 and 32.4 mAh cm−2) at 0.05 and 0.1 C-rate, respectively, in an ether-based electrolyte. Because a CNF-containing slurry exhibits low viscosity even at a high solid ratio, it could be filled into the aluminum foam. Additionally, a lithium–sulfur battery with high-sulfur-loading had an energy density of ~120 Wh kg−1, a value that was calculated from the weight of the components of the cathode, anode, current collectors, electrolyte, and separator. Assuming that the amount of electrolyte decreases and that the energy density of cells accumulate, a theoretical energy density of 522 Wh kg−1 was estimated. Moreover, it was found that even if a high-areal-capacity was achieved, the discharge capacity converged at a high C-rate, unless there was an improvement in ion diffusion in the bulk electrolyte. This is considered a limitation of sulfur cathodes with high-sulfur-loading.


2018 ◽  
Vol 11 (06) ◽  
pp. 1840001 ◽  
Author(s):  
Fan Wang ◽  
Xinqi Liang ◽  
Minghua Chen ◽  
Xinhui Xia

It is of great importance to develop high-quality carbon/sulfur cathode for lithium-sulfur batteries (LSBs). Herein, we report a facile strategy to embed sulfur into interconnected carbon nanoflake matrix forming integrated electrode. Interlinked carbon nanoflakes have dual roles not only as a highly conductive matrix to host sulfur, but also act as blocking barriers to suppress the shuttle effect of intermediate polysulfides. In the light of these positive characteristics, the obtained carbon nanoflake/S cathode exhibit good LSBs performances with high capacities (1117[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 0.2[Formula: see text]C, and 741[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 0.6[Formula: see text]C) and good high-rate cycling performance. Our synthetic method provides a novel way to construct enhanced carbon/sulfur cathode for LSBs.


2014 ◽  
Vol 253 ◽  
pp. 55-63 ◽  
Author(s):  
Jing Xie ◽  
Juan Yang ◽  
Xiangyang Zhou ◽  
Youlan Zou ◽  
Jingjing Tang ◽  
...  

2014 ◽  
Vol 2 (28) ◽  
pp. 10869-10875 ◽  
Author(s):  
Jia-Qi Huang ◽  
Hong-Jie Peng ◽  
Xin-Yan Liu ◽  
Jing-Qi Nie ◽  
Xin-Bing Cheng ◽  
...  

A flexible sulfur cathode electrode based on interlinked carbon nanotubes/carbon nanocages with superior conductivity and high mechanical strength was fabricated, which presented an high capacity of 1354 mAh g−1 and exhibited a high electrochemical rate capability.


2021 ◽  
pp. 138898
Author(s):  
Mohammad Ramezanitaghartapeh ◽  
Anthony F. Hollenkamp ◽  
Mustafa Musameh ◽  
Peter J. Mahon

2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


Sign in / Sign up

Export Citation Format

Share Document