Nanosensor Array Platform to Capture Whole Disease Fingerprints

2020 ◽  
Vol MA2020-02 (66) ◽  
pp. 3398-3398
Author(s):  
Mijin Kim ◽  
Yoona Yang ◽  
Peng Wang ◽  
Chen Chen ◽  
Merav Antman-Passig ◽  
...  
Keyword(s):  
GigaScience ◽  
2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Katarzyna Murat ◽  
Björn Grüning ◽  
Paulina Wiktoria Poterlowicz ◽  
Gillian Westgate ◽  
Desmond J Tobin ◽  
...  

Abstract Background Infinium Human Methylation BeadChip is an array platform for complex evaluation of DNA methylation at an individual CpG locus in the human genome based on Illumina’s bead technology and is one of the most common techniques used in epigenome-wide association studies. Finding associations between epigenetic variation and phenotype is a significant challenge in biomedical research. The newest version, HumanMethylationEPIC, quantifies the DNA methylation level of 850,000 CpG sites, while the previous versions, HumanMethylation450 and HumanMethylation27, measured >450,000 and 27,000 loci, respectively. Although a number of bioinformatics tools have been developed to analyse this assay, they require some programming skills and experience in order to be usable. Results We have developed a pipeline for the Galaxy platform for those without experience aimed at DNA methylation analysis using the Infinium Human Methylation BeadChip. Our tool is integrated into Galaxy (http://galaxyproject.org), a web-based platform. This allows users to analyse data from the Infinium Human Methylation BeadChip in the easiest possible way. Conclusions The pipeline provides a group of integrated analytical methods wrapped into an easy-to-use interface. Our tool is available from the Galaxy ToolShed, GitHub repository, and also as a Docker image. The aim of this project is to make Infinium Human Methylation BeadChip analysis more flexible and accessible to everyone.


2022 ◽  
Vol 23 (2) ◽  
pp. 587
Author(s):  
Dong Woo Lee ◽  
Jung Eun Kim ◽  
Ga-Haeng Lee ◽  
Arang Son ◽  
Hee Chul Park ◽  
...  

Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.


Author(s):  
Moritz Leber ◽  
Julia Körner ◽  
Christopher F. Reiche ◽  
Ming Yin ◽  
Rajmohan Bhandari ◽  
...  
Keyword(s):  

2020 ◽  
Vol 67 (8) ◽  
pp. 2166-2175 ◽  
Author(s):  
Cody A. LaBelle ◽  
Raymond J. Zhang ◽  
Paul M. Armistead ◽  
Nancy L. Allbritton

2017 ◽  
Vol 89 (8) ◽  
pp. 4444-4451 ◽  
Author(s):  
Christopher J. Gray ◽  
Antonio Sánchez-Ruíz ◽  
Ivana Šardzíková ◽  
Yassir A. Ahmed ◽  
Rebecca L. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document