Multiplexed Detection
Recently Published Documents





2021 ◽  
Vol 448 ◽  
pp. 214181
Rafael C. Castro ◽  
M. Lúcia M.F.S. Saraiva ◽  
João L.M. Santos ◽  
David S.M. Ribeiro

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1042
Nathalie Wurtz ◽  
Océane Revol ◽  
Priscilla Jardot ◽  
Audrey Giraud-Gatineau ◽  
Linda Houhamdi ◽  

The monitoring of SARS-CoV-2 RNA in sewage has been proposed as a simple and unbiased means of assessing epidemic evolution and the efficiency of the COVID-19 control measures. The past year has been marked by the emergence of variants that have led to a succession of epidemic waves. It thus appears that monitoring the presence of SARS-CoV-2 in wastewater alone is insufficient, and it may be important in the future to also monitor the evolution of these variants. We used a real-time RT-PCR screening test for variants in the wastewater of our city to assess the effectiveness of direct SARS-CoV-2 sequencing from the same wastewater. We compared the genome sequencing results obtained over the large RS network and the smaller B7 network with the different distributions of the variants observed by RT-PCR screening. The prevalence of the “UK variant” in the RS and B7 networks was estimated to be 70% and 8% using RT-PCR screening compared to 95% and 64% using genome sequencing, respectively. The latter values were close to the epidemiology observed in patients of the corresponding area, which were 91% and 58%, respectively. Genome sequencing in sewage identified SARS-CoV-2 of lineage B.1.525 in B7 at 27% (37% in patients), whereas it was completely missed by RT-PCR. We thus determined that direct sequencing makes it possible to observe, in wastewater, a distribution of the variants comparable to that revealed by genomic monitoring in patients and that this method is more accurate than RT-PCR. It also shows that, rather than a single large sample, it would be preferable to analyse several targeted samples if we want to more appropriately assess the geographical distribution of the different variants. In conclusion, this work supports the wider surveillance of SARS-CoV-2 variants in wastewater by genome sequencing and targeting small areas on the condition of having a sequencing capacity and, when this is not the case, to developing more precise screening tests based on the multiplexed detection of the mutations of interest.

2021 ◽  
Kofi K Acheampong ◽  
Dylan L Schaff ◽  
Benjamin L Emert ◽  
Jonathan Lake ◽  
Sam Reffsin ◽  

The widespread Coronavirus Disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have a limited toolset available for visualizing SARS-CoV-2 in cells and tissues, particularly in tissues from patients who died from COVID-19. Generally, single-molecule RNA FISH techniques have shown mixed results in formalin fixed paraffin embedded tissues such as those preserved from human autopsies. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA FISH with amplification by hybridization chain reaction (HCR). We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N) as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions, with the ORF1a concentrated around the nucleus and the N showing a diffuse distribution across the cytoplasm. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO), but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages, consistent with phagocytosis of infected cells. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE autopsy specimens. Furthermore, we multiplex this assay with probes for cellular genes to determine what cell-types are infected within the lung. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues as well as extended for other applications including investigating the viral life cycle, viral diagnostics, and drug screening.

2021 ◽  
pp. 2100640
Kang Hyun Lee ◽  
Hanhwi Jang ◽  
Yoon Seok Kim ◽  
Chul‐Ho Lee ◽  
Seunghee H. Cho ◽  

2021 ◽  
Vol 7 (32) ◽  
pp. eabh2944
Helena de Puig ◽  
Rose A. Lee ◽  
Devora Najjar ◽  
Xiao Tan ◽  
Luis R. Soekensen ◽  

The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out. miSHERLOCK achieves highly sensitive multiplexed detection of SARS-CoV-2 and mutations associated with variants B.1.1.7, B.1.351, and P.1. Our modular system enables easy exchange of assays to address diverse user needs and can be rapidly reconfigured to detect different viruses and variants of concern. An adjunctive smartphone application enables output quantification, automated interpretation, and the possibility of remote, distributed result reporting.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5023
Josephine Aidoo-Brown ◽  
Despina Moschou ◽  
Pedro Estrela

Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.

Sign in / Sign up

Export Citation Format

Share Document