(Invited) Non Quasi Static Modeling of Printed Organic Thin Film Transistors in Large Signal and Small Signal Operation

2021 ◽  
Vol MA2021-01 (32) ◽  
pp. 1063-1063
Author(s):  
Antonio Valletta ◽  
Sabrina Calvi ◽  
Matteo Rapisarda ◽  
Guglielmo Fortunato ◽  
Andrea Fabbri ◽  
...  
2020 ◽  
Vol 41 (10) ◽  
pp. 1512-1515
Author(s):  
August Arnal ◽  
Albert Crespo-Yepes ◽  
Eloi Ramon ◽  
Lluis Teres ◽  
Rosana Rodriguez ◽  
...  

2011 ◽  
Vol 20 (04) ◽  
pp. 727-748
Author(s):  
ALEJANDRA CASTRO-CARRANZA ◽  
BENJAMIN IÑIGUEZ ◽  
JOSEP PALLARÈS

In this work, we review the physical properties of organic materials and transistors, discussing especially the charge transport mechanisms. Finally, we present an analytical and continuous charge model for Organic Thin Film Transistors (OTFTs) from which analytical expressions of all the total capacitances are obtained. They are developed and finally written as continuous explicit functions of the applied voltage, resulting in a complete charge-based small-signal model composed by a unified charge control model derived from Poisson equation assuming an exponential density of localized states. This charge model was developed from a previously proposed analytical DC current model assuming a hopping based transport. Therefore our complete small signal model has the potential to be successfully used in circuit simulators for the design of OTFTs.


2017 ◽  
Vol 41 ◽  
pp. 345-354 ◽  
Author(s):  
A. Valletta ◽  
M. Rapisarda ◽  
S. Calvi ◽  
G. Fortunato ◽  
M. Frasca ◽  
...  

2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2010 ◽  
Vol 130 (2) ◽  
pp. 161-166
Author(s):  
Yoshinori Ishikawa ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
Ken Tsutsui

2013 ◽  
Vol E96.C (11) ◽  
pp. 1360-1366 ◽  
Author(s):  
Ichiro FUJIEDA ◽  
Tse Nga NG ◽  
Tomoya HOSHINO ◽  
Tomonori HANASAKI

2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


Sign in / Sign up

Export Citation Format

Share Document