scholarly journals AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland (Squalus acanthias)

2018 ◽  
Vol 314 (4) ◽  
pp. C473-C482
Author(s):  
Rugina I. Neuman ◽  
Juliette A. M. van Kalmthout ◽  
Daniel J. Pfau ◽  
Dhariyat M. Menendez ◽  
Lawrence H. Young ◽  
...  

The production of endogenous adenosine during secretagogue stimulation of CFTR leads to feedback inhibition limiting further chloride secretion in the rectal gland of the dogfish shark (Squalus acanthias). In the present study, we examined the role of AMP-kinase (AMPK) as an energy sensor also modulating chloride secretion through CFTR. We found that glands perfused with forskolin and isobutylmethylxanthine (F + I), potent stimulators of chloride secretion in this ancient model, caused significant phosphorylation of the catalytic subunit Thr172 of AMPK. These findings indicate that AMPK is activated during energy-requiring stimulated chloride secretion. In molecular studies, we confirmed that the activating Thr172 site is indeed present in the α-catalytic subunit of AMPK in this ancient gland, which reveals striking homology to AMPKα subunits sequenced in other vertebrates. When perfused rectal glands stimulated with F + I were subjected to severe hypoxic stress or perfused with pharmacologic inhibitors of metabolism (FCCP or oligomycin), phosphorylation of AMPK Thr172 was further increased and chloride secretion was dramatically diminished. The pharmacologic activation of AMPK with AICAR-inhibited chloride secretion, as measured by short-circuit current, when applied to the apical side of shark rectal gland monolayers in primary culture. These results indicate that that activated AMPK, similar to adenosine, transmits an inhibitory signal from metabolism, that limits chloride secretion in the shark rectal gland.

1999 ◽  
Vol 277 (6) ◽  
pp. R1725-R1732 ◽  
Author(s):  
Patricio Silva ◽  
Richard J. Solomon ◽  
Franklin H. Epstein

We studied the modes of activation of the salt-secreting rectal gland of the spiny dogfish, Squalus acanthias, by the native cardiac peptide CNP. The stimulatory action of CNP in isolated perfused glands is inhibited by 10 mM procaine, presumably by blocking release of vasoactive intestinal peptide (VIP) from nerves. Procaine reduces the slope of the dose-response curve of human CNP and that of shark CNP (each P < 0.0001). CNP increases short-circuit current in cultured rectal gland cells from 4.8 ± 1.6 to 27.0 ± 7.8 μA/cm2. It also stimulates the secretion of chloride in isolated perfused glands in the presence of 10 mM procaine from 72 ± 31 to 652 ± 173 μeq ⋅ h−1 ⋅ g−1. These results suggest that CNP has a direct cellular action not mediated by the neural release of VIP. The residual stimulation of perfused glands in the presence of procaine was almost completely inhibited by staurosporine [10 nM; an inhibitor of protein kinase C (PKC)] from 652 ± 173 to 237 ± 61 μeq ⋅ h−1 ⋅ g−1. Although CNP stimulates guanylyl cyclase in shark rectal gland, chloride secretion of perfused glands was not elicited by 8-bromoadenosine-cGMP (8-BrcGMP) alone nor by the activator of PKC phorbol ester. The combination of PKC activation and 8-BrcGMP infusion, however, stimulated chloride secretion in perfused glands from 94 ± 30 to 506 ± 61 μeq ⋅ h−1 ⋅ g−1, a level comparable to that observed in glands blocked with procaine. Several parallel pathways appear to be synergistic in activating chloride secretion stimulated by CNP in the rectal gland.


1993 ◽  
Vol 265 (2) ◽  
pp. R439-R446 ◽  
Author(s):  
P. Silva ◽  
F. H. Epstein ◽  
K. J. Karnaky ◽  
S. Reichlin ◽  
J. N. Forrest

We studied the effects of the 36-amino acid peptide, neuropeptide Y (NPY), on salt secretion by the rectal gland of Squalus acanthias. We used three preparations: whole isolated perfused glands, freshly prepared separated rectal gland tubules, and confluent monolayers of cultured rectal gland cells. In perfused glands NPY inhibited secretion stimulated by vasoactive intestinal peptide (VIP), forskolin, or adenosine 3',5'-cyclic monophosphate (cAMP) and theophylline. Maximal inhibition of 63 +/- 3.4% was seen at 3 x 10(-8) M NPY, with half-maximal effect at 3 x 10(-9) M. NPY did not inhibit the basal activity of rectal gland adenylate cyclase or that stimulated by VIP. The inhibitory action of NPY was not prevented by procaine, nifedipine, or diltiazem, suggesting that it was not secondary to the release of somatostatin or other unknown neurotransmitters from rectal gland nerves. In confirmation, somatostatin was not detected in the venous effluent after administration of NPY. NPY also inhibited transport-related oxygen consumption in separated rectal gland tubules and inhibited short-circuit current generated by confluent monolayers of primary cultures of rectal gland cells. The results indicate that NPY inhibits chloride secretion by a direct action on cells of the shark rectal gland at a site distal to the generation of cAMP.


1991 ◽  
Vol 260 (5) ◽  
pp. C1125-C1130 ◽  
Author(s):  
K. J. Karnaky ◽  
J. D. Valentich ◽  
M. G. Currie ◽  
W. F. Oehlenschlager ◽  
M. P. Kennedy

Monolayer cultures of shark rectal gland (SRG) epithelial cells were treated with atriopeptin (AP), and the effects on Cl- secretion and intracellular guanosine 3',5'-cyclic monophosphate (cGMP) accumulation were examined. Basolateral or apical exposure to 10(-7) M AP markedly stimulated (8-fold) Cl(-)-dependent, bumetanide-sensitive, short-circuit current (Isc). The AP-stimulated Isc exhibited transient oscillations before reaching a steady state. This behavior is not observed when Isc is activated by other secretagogues such as vasoactive intestinal peptide, 2-chloroadenosine, forskolin, or ionomycin. Intracellular cGMP was concomitantly elevated (10-fold) by 10(-7) M AP. Both Isc stimulation and cGMP accumulation responses exhibited a similar dose dependency beginning at an AP concentration of 1 nM. The bilateral response to AP suggests the presence of receptors on both apical and basolateral plasma membranes. These results are the first demonstration of a direct effect of AP on Cl(-)-secreting epithelial cells. These data also suggest a role for cGMP in mediating Cl- secretion in these cells.


1986 ◽  
Vol 250 (3) ◽  
pp. F511-F515 ◽  
Author(s):  
R. Keeler ◽  
N. L. Wong

The effects of prostaglandin E2 (PGE2) on the transport of sodium and chloride were studied in cultured A6 renal epithelial cells. PGE2 on the basolateral but not the apical surface increased transmonolayer short-circuit current (Isc) and conductance. These changes could not be inhibited with amiloride or furosemide in the apical medium. Flux measurements showed that although Isc and net flux of sodium were equal in unstimulated cells, after addition of PGE2 the current increased with no corresponding changes in bidirectional or net flux of sodium. Immersing the cells in sodium-free or chloride-free media inhibited the effects of PGE2. Measurements of the simultaneous fluxes of sodium and chloride showed that after PGE2 was added there was a net flux of chloride from the basal to the apical side (secretion) that was equal to the change in Isc. The effects of PGE2 were inhibited by furosemide in the basal medium. We conclude that PGE2 stimulates a process of chloride secretion in A6 cells.


1977 ◽  
Vol 233 (4) ◽  
pp. F298-F306 ◽  
Author(s):  
P. Silva ◽  
J. Stoff ◽  
M. Field ◽  
L. Fine ◽  
J. N. Forrest ◽  
...  

The isolated rectal gland of Squalus acanthias was stimulated to secrete chloride against an electrical and a chemical gradient when perfused in vitro by theophylline and/or dibutyryl cyclic AMP. Chloride secretion was depressed by ouabain which inhibits Na-K-ATPase. Thiocyanate and furosemide also inhibited chloride secretion but ethoxzolamide, a carbonic anhydrase inhibitor, did not. Chloride transport was highly dependent on sodium concentration in the perfusate. The intracellular concentration of chloride averaged 70-80 meq/liter in intact glands, exceeding the level expected at electrochemical equilibrium and suggesting active transport of chloride into the cell. These features suggest a tentative hypothesis for chloride secretion by the rectal gland in which the uphill transport of chloride into the cytoplasm is coupled through a membrane carrier to the downhill movement of sodium along its electrochemical gradient. The latter is maintained by the Na-K-ATPase pump while chloride is extruded into the duct by electrical forces.


1991 ◽  
Vol 260 (4) ◽  
pp. C813-C823 ◽  
Author(s):  
J. D. Valentich ◽  
J. N. Forrest

To facilitate analysis of the regulation of epithelial Cl- transport by hormones, neurotransmitters, and autocrine mediators, we have developed a primary monolayer culture system for shark rectal gland (SRG) epithelial cells. Cultures exhibit vigorous transcellular Cl- secretion which can be measured using short-circuit current or 36Cl flux methods. Transport is markedly reduced by bumetanide or barium, inhibitors of Na(+)-K(+)-2Cl- cotransport and K+ channels, respectively. This indicates that Cl- secretion by SRG monolayers occurs by a mechanism similar to that described in numerous native Cl- secretory epithelia. Forskolin, 10 microM 2-chloroadenosine, or vasoactive intestinal peptide, potent secretagogues in the isolated perfused SRG, stimulate Cl- secretion by SRG cultures. Submicromolar concentrations of 2-chloroadenosine, which inhibit Cl- secretion in the native SRG, reduce forskolin-stimulated short-circuit current in SRG cultures. Somatostatin, another inhibitor of Cl- secretion by the native SRG, reduces forskolin-stimulated adenosine 3',5'-cyclic monophosphate accumulation in SRG cultures. These results demonstrate that SRG cultures are fully responsive to mediators which activate or inhibit secretion by the native epithelium.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2001 ◽  
Vol 281 (2) ◽  
pp. C633-C648 ◽  
Author(s):  
Sasha Blaug ◽  
Kevin Hybiske ◽  
Jonathan Cohn ◽  
Gary L. Firestone ◽  
Terry E. Machen ◽  
...  

Mammary epithelial 31EG4 cells (MEC) were grown as monolayers on filters to analyze the apical membrane mechanisms that help mediate ion and fluid transport across the epithelium. RT-PCR showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC) message, and immunomicroscopy showed apical membrane staining for both proteins. CFTR was also localized to the apical membrane of native human mammary duct epithelium. In control conditions, mean values of transepithelial potential (apical-side negative) and resistance ( R T) are −5.9 mV and 829 Ω · cm2, respectively. The apical membrane potential ( V A) is −40.7 mV, and the mean ratio of apical to basolateral membrane resistance ( R A/ R B) is 2.8. Apical amiloride hyperpolarized V A by 19.7 mV and tripled R A/ R B. A cAMP-elevating cocktail depolarized V A by 17.6 mV, decreased R A/ R B by 60%, increased short-circuit current by 6 μA/cm2, decreased R T by 155 Ω · cm2, and largely eliminated responses to amiloride. Whole cell patch-clamp measurements demonstrated amiloride-inhibited Na+ currents [linear current-voltage ( I-V) relation] and forskolin-stimulated Cl−currents (linear I-V relation). A capacitance probe method showed that in the control state, MEC monolayers either absorbed or secreted fluid (2–4 μl · cm−2 · h−1). Fluid secretion was stimulated either by activating CFTR (cAMP) or blocking ENaC (amiloride). These data plus equivalent circuit analysis showed that 1) fluid absorption across MEC is mediated by Na+ transport via apical membrane ENaC, and fluid secretion is mediated, in part, by Cl− transport via apical CFTR; 2) in both cases, appropriate counterions move through tight junctions to maintain electroneutrality; and 3) interactions among CFTR, ENaC, and tight junctions allow MEC to either absorb or secrete fluid and, in situ, may help control luminal [Na+] and [Cl−].


1990 ◽  
Vol 259 (2) ◽  
pp. C215-C223 ◽  
Author(s):  
O. A. Candia

Forskolin (and other Cl- secretagogues) does not affect the very small Na(+)-originated short-circuit current (Isc) across frog corneal epithelium bathed in Cl- free solutions. However, forskolin in combination with increased PCO2 bubbling of the solutions (5-20% CO2) stimulated Isc proportionally to PCO2 to a maximum of approximately 8 microA/cm2. This current could be eliminated and reinstated by sequentially changing the gas composition of the bubbling to 100% air and 20% CO2-80% air. The same effects were observed when PCO2 changes were limited to the apical-side solution. Stroma-to-tear HCO3- movement was deemed unlikely, since the increase in Isc was observed with a HCO3(-)-free solution on the stromal side and CO2 gassing limited to the tear side. From the effects of ouabain and tryptamine, at least 80% of the Isc across the basolateral membrane can be accounted for by the Na+ pump current plus K+ movement from cell to bath. Methazolamide also inhibited Isc. Current across the apical membrane cannot be attributed to an electronegative Na(+)-HCO3- symport given the insensitivity of Isc to a disulfonic stilbene and the fact that stroma-to-tear Na+ fluxes did not increase on stimulation of Isc. The tear-to-stroma Na+ flux also remained unaltered, negating an increased apical bath-to-cell Na+ flow. The forskolin-20% CO2 manipulation produced a depolarization of the intracellular potential, a reduction in the apical-to-basolateral resistance ratio, and a decrease in transepithelial resistance.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 264 (2) ◽  
pp. G252-G260 ◽  
Author(s):  
V. Calderaro ◽  
E. Chiosi ◽  
R. Greco ◽  
A. M. Spina ◽  
A. Giovane ◽  
...  

Effects of Ca2+ on adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion were investigated in intact mucosa and isolated crypt cells of rabbit descending colon. Addition of 10 microM prostaglandin (PG)E2 or forskolin to tissues incubated in Ca(2+)-free medium increased the size of short-circuit current (Isc) and Cl- secretion as estimated by unidirectional 36Cl flux measurements (net flux = -2.31 +/- 0.24 vs. -1.22 +/- 0.10 mueq.h-1.cm-2, n = 4, P < 0.001). Addition of 10 microM PGE2 to tissues incubated in 1.2 mM Ca2+ Ringer induced a 7-fold increase in mean cAMP level, whereas it produced an 11-fold increase in tissues exposed to Ca(2+)-free medium. Membrane preparations from whole mucosa incubated in Ca(2+)-free medium displayed a cyclic nucleotide phosphodiesterase activity significantly lower than controls (18.76 +/- 0.54 vs. 31.20 +/- 0.39 pmol cAMP. mg protein-1.min-1, means +/- SE, n = 4, P < 0.001). Ca2+ removal also affected adenylate cyclase (AC) responsiveness to agonists; AC activity increased in controls by 54 and 226% after stimulation with 10 microM PGE2 and forskolin, respectively, but it increased more (77 and 325%, respectively) after incubation in Ca(2+)-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document