Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and β-catenin

2002 ◽  
Vol 283 (3) ◽  
pp. C811-C821 ◽  
Author(s):  
Kala Venkiteswaran ◽  
Kanyan Xiao ◽  
Susan Summers ◽  
Cathárine C. Calkins ◽  
Peter A. Vincent ◽  
...  

VE-cadherin is an endothelial-specific cadherin that plays a central role in vascular barrier function and angiogenesis. The cytoplasmic domain of VE-cadherin is linked to the cytoskeleton through interactions with the armadillo family proteins β-catenin and plakoglobin. Growing evidence indicates that β-catenin and plakoglobin play important roles in epithelial growth and morphogenesis. To test the role of these proteins in vascular cells, a replication-deficient retroviral system was used to express intercellular junction proteins and mutants in the human dermal microvascular endothelial cell line (HMEC-1). A mutant VE-cadherin lacking an adhesive extracellular domain disrupted endothelial barrier function and inhibited endothelial growth. In contrast, expression of exogenous plakoglobin or metabolically stable mutants of β-catenin stimulated HMEC-1 cell growth, which suggests that the β-catenin signaling pathway was active in HMEC-1 cells. This possibility was supported by the finding that a dominant-negative mutant of the transcription factor TCF-4, designed to inhibit β-catenin signaling, also inhibited HMEC-1 cell growth. These observations suggest that intercellular junction proteins function as components of an adhesion and signaling system that regulates vascular barrier function and growth.

2016 ◽  
Vol 116 (11) ◽  
pp. 852-867 ◽  
Author(s):  
Allyson Shook Soon ◽  
Jia Chua ◽  
David Becker

SummaryProlonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.


2006 ◽  
Vol 45 (3) ◽  
pp. e80
Author(s):  
Boris Rudic ◽  
Paul Thomas Brinkkoetter ◽  
Grietje Beck ◽  
Uwe Gottmann ◽  
Claude Braun ◽  
...  

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Thomas Helbing ◽  
Elena Ketterer ◽  
Bianca Engert ◽  
Jennifer Heinke ◽  
Sebastian Grundmann ◽  
...  

Introduction: Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome, are associated with high morbidity and mortality in patients. During the progression of ALI, the endothelial cell barrier of the pulmonary vasculature becomes compromised, leading to pulmonary edema, a characteristic feature of ALI. It is well-established that EC barrier dysfunction is initiated by cytoskeletal remodeling, which leads to disruption of cell-cell contacts and formation of paracellular gaps, allowing penetration of protein-rich fluid and inflammatory cells. Bone morphogenetic proteins (BMPs) are important players in endothelial dysfunction and inflammation but their effects on endothelial permeability in ALI have not been investigated until now. Methods and Results: As a first approach to assess the role of BMPs in acute lung injury we analysed BMP4 and BMPER expression in an infectious (LPS) and a non-infectious (bleomycin) mouse models of acute lung injury. In both models BMP4 and BMPER protein expression levels were reduced demonstrated by western blots, suggesting that BMPs are involved in progression ALI. To assess the role of BMPs on vascular leakage, a key feature of ALI, BMP activity in mice was inhibited by i.p. administration of LDN193189, a small molecule that blocks BMP signalling. After 3 days Evans blue dye (EVB) was administered i.v. and dye extravasation into the lungs was quantified as a marker for vascular leakage. Interestingly, LDN193189 significantly increased endothelial permeability compared to control lungs, indicating that BMP signaling is involved in maintenance of endothelial barrier function. To quantify effects of BMP inhibition on endothelial barrier function in vitro, HUVECs were seeded onto transwell filters and were exposed to LDN193189. After 3 days FITC-dextrane was added and passage into the lower chamber was quantified as a marker for endothelial barrier function. Thrombin served as a positive control. As expected from our in vivo experiments inhibition of BMP signaling by LDN193189 enhanced FITC-dextrane passage. To study specific effects of BMPs on endothelial barrier function, two protagonist of the BMP family, BMP2 and BMP4, or BMP modulator BMPER were tested in the transwell assay in vitro. Interestingly BMP4 and BMPER, but not BMP2, reduced FITC-dextrane passage demonstrating that BMP4 and BMPER improved endothelial barrier function. Vice versa, specific knock down of BMP4 or BMPER increased leakage in transwell assays. Im immuncytochemistry silencing of BMPER or BMP4 induced hyperpermeability as a consequence of a pro-inflammatory endothelial phenotype characterised by reduced cell-cell contacts and increased actin stress fiber formation. Additionally, the pro-inflammatory endothelial phenotype was confirmed by real-time revealing increased expression of adhesion molecules ICAM-1 or proinflammatory cytokines such as IL-6 and IL-8 in endothelial cells after BMPER or BMP4 knock down. Confirming these in vitro results BMPER +/- mice exhibit increased extravasation of EVB into the lungs, indicating that partial loss of BMPER impairs endothelial barrier function in vitro and in vivo. Conclusion: We identify BMPER and BMP4 as local regulators of vascular permeability. Both are protective for endothelial barrier function and may open new therapeutic avenues in the treatment of acute lung injury.


2003 ◽  
Vol 28 (5) ◽  
pp. 626-636 ◽  
Author(s):  
Elizabeth O. Harrington ◽  
Jodi L. Brunelle ◽  
Christopher J. Shannon ◽  
Eric S. Kim ◽  
Kirstin Mennella ◽  
...  

2006 ◽  
Vol 82 (4) ◽  
pp. 534-542 ◽  
Author(s):  
Paul-Thomas Brinkkoetter ◽  
Grietje C. Beck ◽  
Uwe Gottmann ◽  
Ralf Loesel ◽  
Ulf Schnetzke ◽  
...  

2014 ◽  
Vol 106 (2) ◽  
pp. 719a-720a
Author(s):  
Judith A. Stolwijk ◽  
Christian W. Renken ◽  
Mohamed Trebak

2014 ◽  
Vol 306 (8) ◽  
pp. C745-C752 ◽  
Author(s):  
Vladislav V. Makarenko ◽  
Peter V. Usatyuk ◽  
Guoxiang Yuan ◽  
May M. Lee ◽  
Jayasri Nanduri ◽  
...  

The objective of the present study was to determine the impact of simulated apnea with intermittent hypoxia (IH) on endothelial barrier function and assess the underlying mechanism(s). Experiments were performed on human lung microvascular endothelial cells exposed to IH-consisting alternating cycles of 1.5% O2 for 30s followed by 20% O2 for 5 min. IH decreased transendothelial electrical resistance (TEER) suggesting attenuated endothelial barrier function. The effect of IH on TEER was stimulus dependent and reversible after reoxygenation. IH-exposed cells exhibited stress fiber formation and redistribution of cortactin, vascular endothelial-cadherins, and zona occludens-1 junction proteins along with increased intercellular gaps at cell-cell boundaries. Extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) were phosphorylated in IH-exposed cells. Inhibiting either ERK or JNK prevented the IH-induced decrease in TEER and the reorganization of the cytoskeleton and junction proteins. IH increased reactive oxygen species (ROS) levels, and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride, a membrane-permeable antioxidant, prevented ERK and JNK phosphorylation as well as IH-induced changes in endothelial barrier function. These results demonstrate that IH via ROS-dependent activation of MAP kinases leads to reorganization of cytoskeleton and junction proteins resulting in endothelial barrier dysfunction.


1997 ◽  
Vol 272 (1) ◽  
pp. L38-L43 ◽  
Author(s):  
S. Hippenstiel ◽  
S. Tannert-Otto ◽  
N. Vollrath ◽  
M. Krull ◽  
I. Just ◽  
...  

The endothelial cytoskeleton is important for the regulation of endothelial barrier function. Small GTP-binding Rho proteins play a central role in the organization of the microfilament system. Clostridium difficile toxin B (TcdB) inactivates Rho proteins by glucosylation at Thr-37. We used TcdB as a probe to study the role of Rho proteins in the regulation of endothelial barrier function. TcdB time (50-170 min) and dose (10-100 ng/ml) dependently increased the hydraulic conductivity of cultured porcine pulmonary artery endothelial cell monolayers approximately 10-fold. Simultaneously, the albumin reflection coefficient decreased substantially from 0.8 to 0.15. Before endothelial hyperpermeability, TcdB reduced F-actin content in a dose-dependent manner, whereas G-actin content remained unchanged. Finally, we proved that TcdB caused dose (5-100 ng/ml)- and time-dependent glucosylation of Rho proteins in endothelial cells. Phalloidin, which stabilizes filamentous actin, prevented the effect of TcdB on endothelial permeability. In contrast to thrombin-, hydrogen peroxide-, or Escherichia coli hemolysin-induced hyperpermeability, the elevation of cyclic nucleotides did not block TcdB-related permeability. The data demonstrate a central role of small GTP-binding Rho proteins for the control of endothelial barrier function.


Sign in / Sign up

Export Citation Format

Share Document