scholarly journals Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility

2006 ◽  
Vol 290 (2) ◽  
pp. C567-C576 ◽  
Author(s):  
Marco A. Brotto ◽  
Brandon J. Biesiadecki ◽  
Leticia S. Brotto ◽  
Thomas M. Nosek ◽  
Jian-Ping Jin

Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.

1996 ◽  
Vol 81 (1) ◽  
pp. 123-132 ◽  
Author(s):  
V. J. Caiozzo ◽  
F. Haddad ◽  
M. J. Baker ◽  
R. E. Herrick ◽  
N. Prietto ◽  
...  

This study examined the effects of microgravity (14 days) on 1) the contractile properties of the soleus (Sol), an antigravity skeletal muscle; and 2) the myosin heavy chain (MHC) protein and mRNA isoform content of the Sol, vastus intermedius (VI), plantaris (Plan), and tibialis anterior (TA) muscles. The force-velocity relationships of the flight Sol muscles had a significant reduction in maximal isometric tension (-37%) and a corresponding increase in maximal shortening velocity (+20%). Additionally, the force-frequency relationship of the flight Sol muscles was shifted to the right of the ground-based control group. Microgravity had the greatest effect on muscle fiber composition in the Sol muscle, with a reduction in slow muscle fibers and a corresponding increase in muscle fibers categorized as hybrid fibers. The estimated absolute MHC isoform content was altered to the greatest extent in the Sol and VI muscles, with significant decreases and elevations in the slow type I and fast type IIX MHC protein isoforms, respectively. Consistent with the protein data, both the flight Sol and VI muscles exhibited significant elevations in the fast type IIX MHC mRNA isoform. In contrast, however, the flight Plan and TA groups had significant increases in the fast type IIB MHC mRNA isoform content without corresponding changes at the protein level. The results of this study suggest that spaceflight of even short duration produces important changes in the contractile properties of antigravity skeletal muscle. These changes are mediated by alterations in MHC phenotype and reductions in muscle mass. In some instances, the alterations in MHC mRNA isoform content seemed to be uncoupled from those occurring at the protein level. This apparent uncoupling between mRNA and protein expression demonstrates that the effects of microgravity must be better understood at the transcriptional, translational, and post-translational levels.


2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


2021 ◽  
Author(s):  
Malek Kammoun ◽  
Philippe Pouletaut ◽  
Sandrine Morandat ◽  
Malayannan Subramaniam ◽  
John R. Hawse ◽  
...  

2015 ◽  
Vol 108 (2) ◽  
pp. 504a
Author(s):  
Beatrix Dienes ◽  
Nasreen Sultana ◽  
Janos Vincze ◽  
Monika Sztretye ◽  
Peter Szentesi ◽  
...  

2009 ◽  
Vol 59 (4) ◽  
pp. 317-328 ◽  
Author(s):  
Pura Bolaños ◽  
Alis Guillén ◽  
Reinaldo DiPolo ◽  
Carlo Caputo

2002 ◽  
Vol 96 (Sup 2) ◽  
pp. A972 ◽  
Author(s):  
Wolfgang Zink ◽  
Gudrun Kunst ◽  
Eike Martin ◽  
Rainer H.A. Fink ◽  
Bernhard M. Graf

2002 ◽  
Vol 96 (Sup 2) ◽  
pp. A971 ◽  
Author(s):  
Wolfgang Zink ◽  
Christoph Seif ◽  
Juergen R.E. Bohl ◽  
Eike Martin ◽  
Bernhard M. Graf

Sign in / Sign up

Export Citation Format

Share Document