Cell volume and metabolic dependence of NEM-activated K+-Cl- flux in human red blood cells

1985 ◽  
Vol 249 (1) ◽  
pp. C124-C128 ◽  
Author(s):  
P. K. Lauf ◽  
C. M. Perkins ◽  
N. C. Adragna

The effects of incubation in anisosmotic media and of metabolic depletion on ouabain-resistant (OR) Cl--dependent K+ influxes stimulated by N-ethylmaleimide (NEM) were studied in human red blood cells using Rb+ as K+ analogue. The NEM-stimulated but not the basal Rb+-Cl- influx measured in phosphate-buffered anisosmotic media was found to be cell volume dependent. When cellular ATP, [ATP]c, was lowered to less than 0.10 of its initial level by exposure to nonmetabolizable 2-deoxy-D-glucose, the NEM-stimulated but not the basal Cl--dependent Rb+ influxes were abolished. Metabolically depleted red blood cells subsequently repleted by incubation in glucose plus inosine regained the NEM-inducible Rb+ (K+) transport activity. The difference in the time course of ATP breakdown and Rb+ influx inhibition suggests that energization of the NEM-stimulated Rb+ flux by metabolism may involve factors additional to ATP.

2021 ◽  
Vol 17 (3) ◽  
pp. e1008496
Author(s):  
Simon Rogers ◽  
Virgilio L. Lew

Human red blood cells (RBCs) have a circulatory lifespan of about four months. Under constant oxidative and mechanical stress, but devoid of organelles and deprived of biosynthetic capacity for protein renewal, RBCs undergo substantial homeostatic changes, progressive densification followed by late density reversal among others, changes assumed to have been harnessed by evolution to sustain the rheological competence of the RBCs for as long as possible. The unknown mechanisms by which this is achieved are the subject of this investigation. Each RBC traverses capillaries between 1000 and 2000 times per day, roughly one transit per minute. A dedicated Lifespan model of RBC homeostasis was developed as an extension of the RCM introduced in the previous paper to explore the cumulative patterns predicted for repetitive capillary transits over a standardized lifespan period of 120 days, using experimental data to constrain the range of acceptable model outcomes. Capillary transits were simulated by periods of elevated cell/medium volume ratios and by transient deformation-induced permeability changes attributed to PIEZO1 channel mediation as outlined in the previous paper. The first unexpected finding was that quantal density changes generated during single capillary transits cease accumulating after a few days and cannot account for the observed progressive densification of RBCs on their own, thus ruling out the quantal hypothesis. The second unexpected finding was that the documented patterns of RBC densification and late reversal could only be emulated by the implementation of a strict time-course of decay in the activities of the calcium and Na/K pumps, suggestive of a selective mechanism enabling the extended longevity of RBCs. The densification pattern over most of the circulatory lifespan was determined by calcium pump decay whereas late density reversal was shaped by the pattern of Na/K pump decay. A third finding was that both quantal changes and pump-decay regimes were necessary to account for the documented lifespan pattern, neither sufficient on their own. A fourth new finding revealed that RBCs exposed to levels of PIEZO1-medited calcium permeation above certain thresholds in the circulation could develop a pattern of early or late hyperdense collapse followed by delayed density reversal. When tested over much reduced lifespan periods the results reproduced the known circulatory fate of irreversible sickle cells, the cell subpopulation responsible for vaso-occlusion and for most of the clinical manifestations of sickle cell disease. Analysis of the results provided an insightful new understanding of the mechanisms driving the changes in RBC homeostasis during circulatory aging in health and disease.


2002 ◽  
Vol 9 (8) ◽  
pp. 878-885 ◽  
Author(s):  
Hilde Kanli Galtung ◽  
Vibeke Sørlundsengen ◽  
Kjell S. Sakariassen ◽  
Haakon B. Benestad

Author(s):  
Simon Rogers ◽  
Virgilio L. Lew

AbstractHuman red blood cells (RBCs) have a circulatory lifespan of about four months. Under constant oxidative and mechanical stress, but devoid of organelles and deprived of biosynthetic capacity for protein renewal, RBCs undergo substantial homeostatic changes, progressive densification followed by late density reversal among others, changes assumed to have been harnessed by evolution to sustain the rheological competence of the RBCs for as long as possible. The unknown mechanisms by which this is achieved are the subject of this investigation. Each RBC traverses capillaries between 1000 and 2000 times per day, roughly one transit per minute, a total of about 2•105 transits during their lifespan. A dedicated Lifespan model of RBC homeostasis was developed as an extension of the RCM introduced in the first paper of this series to explore the cumulative patterns predicted for repetitive capillary transits over a standardized lifespan period of 120 days, using experimental data to constrain the parameter space. Capillary transits were simulated by periods of elevated cell/medium volume ratios and by transient deformation-induced permeability changes attributed to PIEZO1 channel mediation as outlined in the second paper of this series. The first unexpected finding was that quantal changes generated during single capillary transits cease accumulating after a few days and cannot account for the observed progressive densification of RBCs on their own, thus ruling out the quantal hypothesis. The second unexpected finding was that the documented patterns of RBC densification and late reversal could only be emulated by the implementation of a strict time-course of decay in the activities of the calcium and Na/K pumps, but only in addition to the quantal changes. These results showed that both quantal changes and pump-decay regimes were necessary to account for the documented lifespan pattern, neither sufficient on their own. They also suggested a strong selective component in the pump decay sequence. A third finding was that RBCs exposed to levels of calcium permeation above certain thresholds in the circulation could develop a pattern of late or early hyperdense collapse followed by delayed density reversal. When tested over much reduced lifespan periods the results emulated the known circulatory fate of irreversible sickle cells, the cell subpopulation responsible for vaso-occlusion and for most of the clinical manifestations of sickle cell disease. Analysis of the results provided an insightful new understanding of the mechanisms driving the changes in RBC homeostasis during circulatory aging in health and disease.


1992 ◽  
Vol 262 (2) ◽  
pp. C418-C421 ◽  
Author(s):  
J. C. Parker ◽  
G. C. Colclasure

Two sets of observations suggest a linkage between volume-responsive Na and K transport systems in dog red blood cells. 1) The lyotropic anion thiocyanate inhibits shrinkage-induced Na-H exchange and stimulates swelling-induced K-Cl cotransport. 2) The effect of a brief incubation with N-phenylmaleimide (NPM) on Na and K transport depends on the volume of the cells at the time of exposure to the sulfhydryl reagent. Cells shrunken during the NPM incubation and then brought back to normal volume behave as though they were still shrunken, i.e., they show an increased Na flux and a decreased K flux. Cells incubated with NPM in a swollen state retain fluxes characteristic of swollen cells when returned to a normal volume. The electrophoretic mobility of the membrane-associated enzyme glyceraldehyde-3-phosphate dehydrogenase is influenced by the cell volume at the time of NPM exposure. These findings point to the existence of a system in cells that perceives volume changes and coordinates the responses of membrane transporters.


2017 ◽  
Vol 292 (48) ◽  
pp. 19556-19564 ◽  
Author(s):  
James T. Yurkovich ◽  
Daniel C. Zielinski ◽  
Laurence Yang ◽  
Giuseppe Paglia ◽  
Ottar Rolfsson ◽  
...  

1979 ◽  
Vol 74 (2) ◽  
pp. 157-185 ◽  
Author(s):  
J C Freedman ◽  
J F Hoffman

Human red blood cells have been incubated in the presence of nystatin, which allows Na and K, as well as Cl and pH to equilibrate rapidly when cell volume is set with external impermeant sucrose. The intracellular mean ionic activity coefficients, relative to values in the extracellular solution, for KCl and NaCl are 1.01 +/- 0.02 and 0.99 +/- 0.02 (SD, n = 10), respectively, and are independent of external pH, pH o, and of [sucrose]o. With nystatin the dependence of red cell volume on [sucrose]o deviates from ideal osmotic behavior by as much as a factor of three. A virial equation for the osmotic coefficient, phi, of human hemoglobin, Hb, accounts for the cell volumes, and is the same as that which describes Adair's measurements of phi Hb for Hb isolated from sheep and ox bloods. In the presence of nystatin the slope of the acid-base titration curve of the cells is independent of cell volume, implying that the charge on impermeant cellular solutes is independent of Hb concentration at constant pH. By modifying the Jacobs-stewart equations (1947. J. Cell. Comp. Physiol. 30: 79--103) with the osmotic coefficients of Hb and of salts, a nonideal thermodynamic model has been devised which predicts equilibrium Donnan ratios and red cell volume from the composition of the extracellular solution and from certain parameters of the cells. In addition to accounting for the dependence of cell volume on osmotic pressure, the model also describes accurately the dependence of Donnan ratios and cell volumes on pHo either in the presence or absence of nystatin.


1986 ◽  
Vol 250 (1) ◽  
pp. C26-C31 ◽  
Author(s):  
M. K. McNamara ◽  
J. S. Wiley

Ca2+ influx was measured into human erythrocytes in which efflux was blocked by either introduction of an intracellular Ca2+ chelator, introduction of the Ca2+ chelator followed by ATP depletion, or depletion of the Ca2+ pump cofactors ATP and Mg2+. The Ca2+ influx under all three conditions was 14-20 mumol . 1 cells-1 . h-1, which is an order of magnitude higher than the influx previously reported for cells depleted of either ATP or Mg2+ separately. The difference between the two values was explained by the finding of substantial Ca2+ efflux from the Ca2+-loaded ATP-depleted cells, whereas this efflux was insignificant from cells loaded with quin 2 and then ATP depleted. Under these latter conditions Ca2+ influx estimates the unidirectional permeability to this cation. Studies using this technique showed that Ca2+ influx was the same in media of isotonic sodium, potassium, lithium, choline, or magnesium chlorides. Moreover the dependence of Ca2+ influx on external Ca2+ concentration was well described by the sum of saturable and nonsaturable (linear) components.


1956 ◽  
Vol 186 (1) ◽  
pp. 97-100 ◽  
Author(s):  
E. L. Smith ◽  
R. A. Huggins ◽  
L. Kraintz ◽  
R. A. Seibert ◽  
S. Deavers

When dogs are injected with either or both Fe59 and Cr51-labeled cells (initial tag) prior to a series of transfusions (up to 20.0–25.0 cc % body weight) the measured blood and cell volume closely approach and may exceed the expected. After the series of transfusions are completed, if an additional isotope (final tag) is injected the blood and cell volumes are much less than the expected. The difference between the blood and cell volumes determined by the initial and final tag can be explained by the ‘trapping’ of red blood cells. The volume of red blood cells ‘trapped’ after multiple transfusion (up to 10.0–14.9% body weight) can equal or exceed the added cell volume.


Sign in / Sign up

Export Citation Format

Share Document