extracellular solution
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 0)

H-INDEX

24
(FIVE YEARS 0)

2017 ◽  
Vol 68 (1) ◽  
pp. 101-101
Author(s):  
Hiroshi Hibino ◽  
Madoka Takai ◽  
Hidenori Noguchi ◽  
Seishiro Sawamura ◽  
Yasufumi Takahashi ◽  
...  

2017 ◽  
Vol 67 (4) ◽  
pp. 439-445 ◽  
Author(s):  
Hiroshi Hibino ◽  
Madoka Takai ◽  
Hidenori Noguchi ◽  
Seishiro Sawamura ◽  
Yasufumi Takahashi ◽  
...  

2017 ◽  
Vol 42 (6) ◽  
pp. 2169-2181 ◽  
Author(s):  
Tamer Al-Maghout ◽  
Lisann Pelzl ◽  
Itishri Sahu ◽  
Basma Sukkar ◽  
Zohreh Hosseinzadeh ◽  
...  

Background: TGFβ1, a decisive regulator of megakaryocyte maturation and platelet formation, has previously been shown to up-regulate both, store operated Ca2+ entry (SOCE) and Ca2+ extrusion by Na+/Ca2+ exchange. The growth factor thus augments the increase of cytosolic Ca2+ activity ([Ca2+]i) following release of Ca2+ from intracellular stores and accelerates the subsequent decline of [Ca2+]i. The effect on SOCE is dependent on a signaling cascade including p38 kinase, serum & glucocorticoid inducible kinase SGK1, and nuclear factor NFκB. The specific Na+/Ca2+ exchanger isoforms involved and the signalling regulating the Na+/Ca2+ exchangers remained, however elusive. The present study explored, whether TGFβ1 influences the expression and function of K+ insensitive (NCX) and K+ sensitive (NCKX) Na+/Ca2+ exchangers, and aimed to shed light on the signalling involved. Methods: In human megakaryocytic cells (MEG01) RT-PCR was performed to quantify NCX/NCKX isoform transcript levels, [Ca2+]i was determined by Fura-2 fluorescence, and Na+/Ca2+ exchanger activity was estimated from the increase of [Ca2+]i following switch from an extracellular solution with 130 or 90 mM Na+ and 0 mM Ca2+ to an extracellular solution with 0 Na+ and 2 mM Ca2+. K+ concentration was 0 mM for analysis of NCX and 40 mM for analysis of NCKX. Results: TGFβ1 (60 ng/ml, 24 h) significantly increased the transcript levels of NCX1, NCKX1, NCKX2 and NCKX5. Moreover, TGFβ1 (60 ng/ml, 24 h) significantly increased the activity of both, NCX and NCKX. The effect of TGFβ1 on NCX and NCKX transcript levels and activity was significantly blunted by p38 kinase inhibitor Skepinone-L (1 µM), the effect on NCX and NCKX activity further by SGK1 inhibitor GSK-650394 (10 µM) and NFκB inhibitor Wogonin (100 µM). Conclusions: TGFβ1 markedly up-regulates transcription of NCX1, NCKX1, NCKX2, and NCKX5 and thus Na+/Ca2+ exchanger activity, an effect requiring p38 kinase, SGK1 and NFκB.


2016 ◽  
Author(s):  
Sangyun Lee ◽  
Heather B. Mayes ◽  
Jessica M. J. Swanson ◽  
Gregory A. Voth

AbstractThe ClC family of transmembrane proteins functions throughout nature to control the transport of Cl− ions across biological membranes. ClC-ec1 from Escherichia coli is an antiporter, coupling the transport of Cl− and H+ ions in opposite directions and driven by the concentration gradients of the ions. Despite keen interest in this protein, the molecular mechanism of the Cl−/H+ coupling has not been fully elucidated. Here, we have used multiscale simulation to help identify the essential mechanism of the Cl−/H+ coupling. We find that the highest barrier for proton transport (PT) from the intra- to extracellular solution is attributable to a chemical reaction—the deprotonation of glutamic acid 148 (E148). This barrier is significantly reduced by the binding of Cl− in the “central” site (Cl−cen), which displaces E148 and thereby facilitates its deprotonation. Conversely, in the absence of Cl−cen E148 favors the “down” conformation, which results in a much higher cumulative rotation and deprotonation barrier that effectively blocks PT to the extracellular solution. Thus, the rotation of E148 plays a critical role in defining the Cl−/H+ coupling. As a control, we have also simulated PT in the ClC-ec1 E148A mutant to further understand the role of this residue. Replacement with a non-protonatable residue greatly increases the free energy barrier for PT from E203 to the extracellular solution, explaining the experimental result that PT in E148A is blocked whether or not Cl−cen is present. The results presented here suggest both how a chemical reaction can control the rate of PT and also how it can provide a mechanism for a coupling of the two ion transport processes.


2015 ◽  
Vol 114 (3) ◽  
pp. 2053-2064 ◽  
Author(s):  
Anna Dondzillo ◽  
Kevin D. Quinn ◽  
Charmion I. Cruickshank-Quinn ◽  
Nichole Reisdorph ◽  
Tim C. Lei ◽  
...  

Electrophysiological recordings from brain slices are typically performed in small recording chambers that allow for the superfusion of the tissue with artificial extracellular solution (ECS), while the chamber holding the tissue is mounted in the optical path of a microscope to image neurons in the tissue. ECS itself is inexpensive, and thus superfusion rates and volumes of ECS consumed during an experiment using standard ECS are not critical. However, some experiments require the addition of expensive pharmacological agents or other chemical compounds to the ECS, creating a need to build superfusion systems that operate on small volumes while still delivering appropriate amounts of oxygen and other nutrients to the tissue. We developed a closed circulation tissue chamber for slice recordings that operates with small volumes of bath solution in the range of 1.0 to 2.6 ml and a constant oxygen/carbon dioxide delivery to the solution in the bath. In our chamber, the ECS is oxygenated and recirculated directly in the recording chamber, eliminating the need for tubes and external bottles/containers to recirculate and bubble ECS and greatly reducing the total ECS volume required for superfusion. At the same time, the efficiency of tissue oxygenation and health of the section are comparable to standard superfusion methods. We also determined that the small volume of ECS contains a sufficient amount of nutrients to support the health of a standard brain slice for several hours without concern for either depletion of nutrients or accumulation of waste products.


Sign in / Sign up

Export Citation Format

Share Document