Muscarinic inhibition of ATP-sensitive K+ channels by protein kinase C in urinary bladder smooth muscle

1993 ◽  
Vol 265 (6) ◽  
pp. C1723-C1728 ◽  
Author(s):  
A. D. Bonev ◽  
M. T. Nelson

We explored the possibility that muscarinic receptor stimulation can inhibit ATP-sensitive K+ (KATP) channels in smooth muscle cells from guinea pig urinary bladder. Whole cell K+ currents were measured in smooth muscle cells isolated from the detrusor muscle of the guinea pig bladder. Stimulation of muscarinic receptors by carbachol (CCh; 10 microM) inhibited KATP currents by 60.7%. Guanosine 5'-O-(2-thiodiphosphate) in the pipette (internal) solution prevented the CCh-induced inhibition of KATP currents. Activators of protein kinase C (PKC), a diacylglycerol analogue, and phorbol 12-myristate 13-acetate inhibited KATP currents by 63.5 and 73.9%, respectively. Blockers of PKC (bisindolylmaleimide GF-109203X and calphostin C) greatly reduced CCh inhibition of KATP currents. We propose that muscarinic receptor stimulation inhibits KATP channels in smooth muscle cells from urinary bladder through activation of PKC.

1995 ◽  
Vol 67 ◽  
pp. 206
Author(s):  
Sanae Nakamura ◽  
Tsuyoshi Isliibashi ◽  
Mitsuo Mita ◽  
Takao Hashimoto ◽  
Kazuhiko Oishi ◽  
...  

Life Sciences ◽  
1999 ◽  
Vol 64 (22) ◽  
pp. 1975-1987 ◽  
Author(s):  
Kazuhiko Oishi ◽  
Tsuyoshi Ishibashi ◽  
Sanae Nakamura ◽  
Mitsuo Mita ◽  
Masaatsu K. Uchida

1996 ◽  
Vol 108 (4) ◽  
pp. 315-323 ◽  
Author(s):  
A D Bonev ◽  
M T Nelson

The effects of vasoconstrictor-receptor (neuropeptide Y, alpha-adrenergic, serotonergic, histaminergic) stimulation on currents through ATP-sensitive potassium (KATP) channels in arterial smooth muscle cells were examined. Whole-cell KATP currents, activated by the synthetic KATP channel opener pinacidil or by the endogenous vasodilator, calcitonin gene-related peptide, which acts through protein kinase A, were measured in smooth muscle cells isolated from mesenteric arteries of rabbit. Stimulation of NPY-, alpha 1-, serotonin (5-HT2)-, and histamine (H1)-receptors inhibited KATP currents by 40-56%. The signal transduction pathway that links these receptors to KATP channels was investigated. An inhibitor of phospholipase C (D609) and of protein kinase C (GF 109203X) reduced the inhibitory effect of these vasoconstrictors on KATP currents from 40-56% to 11-23%. Activators of protein kinase C, a diacylglycerol analogue and phorbol 12-myristate 13-acetate (PMA), inhibited KATP currents by 87.3 and 84.2%, respectively. KATP currents, activated by calcitonin gene-related peptide, were also inhibited (47-87%) by serotonin, phenylephrine, and PMA. We propose that KATP channels in these arterial myocytes are subject to dual modulation by protein kinase C (inhibition) and protein kinase A (activation).


1997 ◽  
Vol 17 (5) ◽  
pp. 969-978 ◽  
Author(s):  
Michele Mietus-Snyder ◽  
Annabelle Friera ◽  
Christopher K. Glass ◽  
Robert E. Pitas

1987 ◽  
Vol 173 (2) ◽  
pp. 504-514 ◽  
Author(s):  
Ken-Ichi Kariya ◽  
Yasuo Fukumoto ◽  
Terutaka Tsuda ◽  
Takeshi Yamamoto ◽  
Yasuhiro Kawahara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document