intracellular atp
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 53)

H-INDEX

44
(FIVE YEARS 4)

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1166
Author(s):  
Jack V. Greiner ◽  
Thomas Glonek

Crystalline lens and striated muscle exist at opposite ends of the metabolic spectrum. Lens is a metabolically quiescent tissue, whereas striated muscle is a mechanically dynamic tissue with high-energy requirements, yet both tissues contain millimolar levels of ATP (>2.3 mM), far exceeding their underlying metabolic needs. We explored intracellular concentrations of ATP across multiple cells, tissues, species, and domains to provide context for interpreting lens/striated muscle data. Our database revealed that high intracellular ATP concentrations are ubiquitous across diverse life forms including species existing from the Precambrian Era, suggesting an ancient highly conserved role for ATP, independent of its widely accepted view as primarily “metabolic currency”. Our findings reinforce suggestions that the primordial function of ATP was non-metabolic in nature, serving instead to prevent protein aggregation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiangfei Li ◽  
Rumeng Han ◽  
Teng Bao ◽  
Tolbert Osire ◽  
Xian Zhang ◽  
...  

Abstract Background Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock, such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. Results This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in an 18.6% and 60.3% increase in ethanol and the alcohol/acid production ratio, respectively. Conclusions This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increase the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
F C Alcicek ◽  
T Mohaissen ◽  
K Bulat ◽  
E Szczesny-Malysiak ◽  
J Dybas ◽  
...  

Abstract Background It was previously reported that red blood cells (RBCs) regulate blood flow via RBC-derived ATP [1]. Nevertheless, to the best of our knowledge, no study was performed to characterize possible alterations in RBC ATP levels in ApoE/LDLR−/− mice [2] which constitute a reliable model of human atherosclerosis, displaying distinct erythropathy [3]. Interestingly, young ApoE/LDLR−/− mice display higher exercise capacity and higher O2 carrying capacity of RBCs, as compared to their age-matched control [3,4]. However, it is not known whether increased exerise capacity in ApoE/LDLR−/− mice is linked to altered ATP release from RBCs. It was previously reported that prostacyclin analogs, known atheroprotective agents, which preserve vascular endothelium functions in various diseases [5,6], induce ATP release from human RBCs [1,7]. Purpose To characterize intra- and extra-cellular ATP levels in RBCs isolated from ApoE/LDLR−/− mice in comparison to control mice. Methods All experiments were conducted according to the Guidelines for Animal Care and Treatment of the EU and to the Local Ethical Committee on Animal Testing at our University. For experiments, 8- and 24-week-old C57BL/6 control mice (N=4–6 and N=5–8, respectively) and ApoE/LDLR−/− mice (N=4–7 and N=4–5, respectively) were used. The complete blood count, RBC morphology, biochemistry of blood plasma, RBC deformability, and RBC phosphatidylserine exposure were assessed. The intra- and extra-cellular ATP levels and ATP release from RBCs due to administration of iloprost (100 nM, 1 μM, 10 μm) were studied. Results Intracellular ATP level in RBCs isolated from 8-week-old ApoE/LDLR−/− mice was considerably lower as compared to their age-matched control (7.72±0.77 and 21.23±3.40 pmoles/1x106 RBCs, respectively). In 24-week-old mice, intracellular ATP in RBCs was low not only in ApoE/LDLR−/− mice but also in control mice (8.70±1.30 and 6.27±0.96 pmoles/1x106 RBCs, respectively). Basal extracellular ATP released from RBCs over 30 min incubation was 400 times lower than corresponding intracellular level, and mirrored intracellular ATP levels in all studied groups. Iloprost (100 nM–10 μM) did not produce robust ATP release in any of the studied groups, with only some effects when the highest concentration was used (10 μM). Conclusion(s) Hypercholesterolemia-dependent changes in young ApoE/LDLR−/− mice prior to atherosclerotic plaque development may induce a severe fall in intracellular ATP levels in the RBCs that might be linked to a possible diversion of glycolysis to 2,3-DPG to increase oxygen delivery, and might contribute to the alterations in RBC-dependent regulation of blood flow in ApoE/LDLR−/−. Further studies are required to mechanistically explain these findings. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): 1) National Science Centre, Poland2) the Innovation Incubator 4.0 project funded by the Ministry of Science and Higher Education, Poland


Author(s):  
Han Yan ◽  
Zhenzhen Chen ◽  
Haizeng Zhang ◽  
Weili Yang ◽  
Xiangyang Liu ◽  
...  

AbstractFAM3A is a recently identified mitochondrial protein that stimulates pancreatic-duodenal homeobox 1 (PDX1) and insulin expressions by promoting ATP release in islet β cells. In this study, the role of intracellular ATP in FAM3A-induced PDX1 expression in pancreatic β cells was further examined. Acute FAM3A inhibition using siRNA transfection in mouse pancreatic islets significantly reduced PDX1 expression, impaired insulin secretion, and caused glucose intolerance in normal mice. In vitro, FAM3A overexpression elevated both intracellular and extracellular ATP contents and promoted PDX1 expression and insulin secretion. FAM3A-induced increase in cellular calcium (Ca2+) levels, PDX1 expression, and insulin secretion, while these were significantly repressed by inhibitors of P2 receptors or the L-type Ca2+ channels. FAM3A-induced PDX1 expression was abolished by a calmodulin inhibitor. Likewise, FAM3A-induced β-cell proliferation was also inhibited by a P2 receptor inhibitor and an L-type Ca2+ channels inhibitor. Both intracellular and extracellular ATP contributed to FAM3A-induced PDX1 expression, insulin secretion, and proliferation of pancreatic β cells.


Author(s):  
Takahiro Shimizu ◽  
Nobuhiro Yanase ◽  
Takuto Fujii ◽  
Haruka Sakakibara ◽  
Hideki Sakai

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yusuke Moritoh ◽  
Shin-ichi Abe ◽  
Hiroki Akiyama ◽  
Akihiro Kobayashi ◽  
Ryokichi Koyama ◽  
...  

AbstractCirculating phosphate levels are tightly controlled within a narrow range in mammals. By using a novel small-molecule inhibitor, we show that the enzymatic activity of inositol hexakisphosphate kinases (IP6K) is essential for phosphate regulation in vivo. IP6K inhibition suppressed XPR1, a phosphate exporter, thereby decreasing cellular phosphate export, which resulted in increased intracellular ATP levels. The in vivo inhibition of IP6K decreased plasma phosphate levels without inhibiting gut intake or kidney reuptake of phosphate, demonstrating a pivotal role of IP6K-regulated cellular phosphate export on circulating phosphate levels. IP6K inhibition-induced decrease in intracellular inositol pyrophosphate, an enzymatic product of IP6K, was correlated with phosphate changes. Chronic IP6K inhibition alleviated hyperphosphataemia, increased kidney ATP, and improved kidney functions in chronic kidney disease rats. Our results demonstrate that the enzymatic activity of IP6K regulates circulating phosphate and intracellular ATP and suggest that IP6K inhibition is a potential novel treatment strategy against hyperphosphataemia.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Cheng ◽  
Lei Su ◽  
Xu Wang ◽  
Xinjie Li ◽  
Lingling Li ◽  
...  

Abstract Background Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, but there is still no effective way to stop or slow its progression. Our previous studies demonstrated that extract of Cynomorium songaricum (ECS), a Chinese herbal medicine, had neuroprotective effects in AD models in vivo. However, the pharmacological mechanism of ECS in AD is still unclear. Methods To study the mechanisms of action of the effects of ECS on AD, we used Aβ25–35- and H2O2-exposed HT22 cells to mimic specific stages of AD in vitro. The mitochondrial membrane potential (MMP), intracellular ATP, intracellular reactive oxygen species (ROS), and expression levels of mitochondrial dynamics-related proteins in each group were examined. Furthermore, we explored the mechanisms by which ECS reduces the phosphorylation of Drp1 at Ser637 and the changes in the concentrations of intracellular calcium ions in the two models after FK506 intervention. Results The results showed that ECS significantly enhanced the MMP (P < 0.05), increased intracellular ATP levels (P < 0.05) and decreased intracellular ROS levels in the Aβ- and H2O2-induced cell models (P < 0.05). Additionally, ECS regulated the expression levels of mitochondrial dynamics-related proteins by reducing the phosphorylation of Drp1 at Ser637 (P < 0.05) and decreasing the expression of Fis1 in the H2O2-induced models (P < 0.05). Further study indicated that ECS reduced the overload of intracellular calcium (P < 0.05). Conclusion Our study results suggest that ECS protects the mitochondrial ultrastructure, ameliorates mitochondrial dysfunction, and maintains mitochondrial dynamics in AD models.


2021 ◽  
Author(s):  
Xiangfei Li ◽  
Rumeng Han ◽  
Teng Bao ◽  
Tolbert Osire ◽  
Xian Zhang ◽  
...  

Abstract Background Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. Results This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in a 18.6% and 60.3%, increased in ethanol and the alcohol/acid production ratio, respectively. Conclusions This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increased the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zongjie Dai ◽  
Yan Zhu ◽  
Hongjun Dong ◽  
Chunhua Zhao ◽  
Yanping Zhang ◽  
...  

Abstract Background The intracellular ATP level is an indicator of cellular energy state and plays a critical role in regulating cellular metabolism. Depletion of intracellular ATP in (facultative) aerobes can enhance glycolysis, thereby promoting end product formation. In the present study, we examined this s trategy in anaerobic ABE (acetone-butanol-ethanol) fermentation using Clostridium acetobutylicum DSM 1731. Results Following overexpression of atpAGD encoding the subunits of water-soluble, ATP-hydrolyzing F1-ATPase, the intracellular ATP level of 1731(pITF1) was significantly reduced compared to control 1731(pIMP1) over the entire batch fermentation. The glucose uptake was markedly enhanced, achieving a 78.8% increase of volumetric glucose utilization rate during the first 18 h. In addition, an early onset of acid re-assimilation and solventogenesis in concomitant with the decreased intracellular ATP level was evident. Consequently, the total solvent production was significantly improved with remarkable increases in yield (14.5%), titer (9.9%) and productivity (5.3%). Further genome-scale metabolic modeling revealed that many metabolic fluxes in 1731(pITF1) were significantly elevated compared to 1731(pIMP1) in acidogenic phase, including those from glycolysis, tricarboxylic cycle, and pyruvate metabolism; this indicates significant metabolic changes in response to intracellular ATP depletion. Conclusions In C. acetobutylicum DSM 1731, depletion of intracellular ATP significantly increased glycolytic rate, enhanced solvent production, and resulted in a wide range of metabolic changes. Our findings provide a novel strategy for engineering solvent-producing C. acetobutylicum, and many other anaerobic microbial cell factories.


2021 ◽  
Vol 12 ◽  
Author(s):  
Harshini Sarojini ◽  
Alexander Bajorek ◽  
Rong Wan ◽  
Jianpu Wang ◽  
Qunwei Zhang ◽  
...  

This study sought to use a newly developed intracellular ATP delivery to enhance incisional wound healing to reduce surgical wound dehiscence and to explore possible mechanism for this effect. Thirty-five adult New Zealand white rabbits were used. Skin incisions were made on the back and closed. ATP-vesicles were mixed with a neutral cream for one side of the wounds while the neutral cream alone was used on the other side of the wounds. Laser speckle contrast imaging (LSCI), biomechanical, histological, and immunohistochemical analyses were performed 7 and 14 days after surgery, and macrophage culture was used to test the enhanced collagen production ability. Among them, 10 were used for wound perfusion study and 25 were used for wound biomechanical and histological/immunohistochemical studies. Wound tissue perfusion was reduced after surgery especially in early days. Wound tissue tensile strength, breaking stress, and elasticity were all much higher in the ATP-vesicle treated group than in the cream treated group at days 7 and 14. The healing was complemented by earlier macrophage accumulation, in situ proliferation, followed by direct collagen production. The results were further confirmed by human macrophage culture. It was concluded that intracellular ATP delivery enhanced healing strength of incisional wounds via multiple mechanisms.


Sign in / Sign up

Export Citation Format

Share Document