Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry

1996 ◽  
Vol 270 (2) ◽  
pp. C600-C607 ◽  
Author(s):  
M. D. Rokaw ◽  
E. Sarac ◽  
E. Lechman ◽  
M. West ◽  
J. Angeski ◽  
...  

In several settings in vivo, prolonged inhibition of apical Na+ entry reduces and prolonged stimulation of apical entry enhances the ability of renal epithelial cells to reabsorb Na+, an important feature of the load-dependent regulation of renal tubular Na+ transport. To model this load dependency, apical Na+ entry was inhibited or stimulated for 18 h in A6 cells and vectorial transport was measured as short-circuit current (Isc) across monolayers on filter-bottom structures. Basal amiloride-sensitive Isc represents the activity of apical Na+ channels, whereas Isc after permeabilization of the apical membrane to cations with nystatin represents maximal activity of the basolateral Na(+)-K(+)-ATPase. Chronic inhibition of apical Na+ entry by 18-h apical exposure to amiloride or replacement of apical Na+ with tetramethylammonium (TMA+), followed by washing and restoration of normal apical medium, revealed a persistent decrease in Isc that remained despite exposure to nystatin. Both basal and nystatin-stimulated Isc recovered progressively after restoration of normal apical medium. In contrast, chronic stimulation of apical Na+ entry by short circuiting the epithelium increased Isc in the absence and presence of nystatin, indicating upregulation of both apical Na+ channels and basolateral Na(+)-K(+)-ATPase. Basolateral equilibrium [3H]ouabain binding was reduced to 67 +/- 5% in TMA+ vs. control cells, whereas values in 18-h short-circuited cells increased by 42 +/- 19%. The results demonstrate that load dependency of tubular Na+ transport can be modeled in vitro and indicate that the regulation of Na(+)-K(+)-ATPase observed in these studies occurs in part by changes in the density of functional transporter proteins within the basolateral membrane.

1983 ◽  
Vol 245 (6) ◽  
pp. F726-F734 ◽  
Author(s):  
J. Kipnowski ◽  
C. S. Park ◽  
D. D. Fanestil

We investigated the effect of the carboxyl-selective reagent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on aldosterone stimulation of Na+ transport in the urinary bladder of the toad. Na+ transport, measured as the short-circuit current (SCC), was irreversibly inhibited by EEDQ in a dose- and time-dependent manner prior to addition of aldosterone. The greater the percentage inhibition by EEDQ (X), the smaller was the maximal increase of SCC after aldosterone (Y). This relationship gave the regression equation Y = 128.41 - 1.73X, r = -0.99 (n = 35). Evidence that the inhibition of SCC produced by EEDQ was limited to effects at the mucosal membrane was attested by the following: 1) EEDQ did not alter the stimulation by aldosterone of the osmotic water flow response to antidiuretic hormone; 2) whereas inhibition of protein synthesis by cycloheximide prevented this effect of aldosterone; 3) amphotericin B fully restored SCC previously inhibited by EEDQ to the level produced in tissues not inhibited by EEDQ; 4) comparison of the effects of amiloride vs. EEDQ pretreatment on the SCC response to aldosterone and amphotericin B revealed nearly identical characteristics; 5) in contrast, amphotericin B stimulation of SCC was limited when Na+ transport was limited by antimycin A (an inhibitor of energy production) or by ouabain. The findings fail to provide positive evidence for the hypothesis that aldosterone induces the synthesis of new Na+ channels but are consistent with hormonal activation of previously existing but nonfunctioning Na+ channels.


1984 ◽  
Vol 246 (6) ◽  
pp. F785-F793 ◽  
Author(s):  
R. D. Perrone ◽  
S. L. Jenks

Basal Na absorption in the rat colon is coupled to that of Cl in an electroneutral fashion. We previously determined that aldosterone or dexamethasone induces amiloride-sensitive mucosal-to-serosal Na flux approximately equal to the amiloride-sensitive short-circuit current in rat distal colon in vitro. However, the effect of these steroids on coupled Na-Cl absorption was not examined. For this purpose, we determined the unidirectional flux of Na and Cl in voltage-clamped distal colon segments from rats treated with aldosterone or dexamethasone. Amiloride was used as a probe for conductive Na absorption, and acetazolamide and Cl-free solutions were used as probes for coupled Na-Cl absorption. Our results indicate that the nature of colonic Na absorption is markedly changed after treatment with these steroids. In contrast to findings in the untreated rat, colonic Na absorption after treatment with aldosterone or dexamethasone was largely independent of the presence of Cl. Net Cl absorption and acetazolamide sensitivity were both greatly diminished. Thus, aldosterone and dexamethasone have multiple effects on Na transport in rat distal colon. In addition to the stimulation of conductive Na absorption by aldosterone, an effect well described in other epithelia, there is marked suppression of coupled Na-Cl absorption. Dexamethasone was less effective in suppressing Cl absorption but equally effective in stimulating conductive Na absorption. These steroid effects were greater in the terminal 1-2 cm of the rat colon.


1991 ◽  
Vol 261 (3) ◽  
pp. F545-F553 ◽  
Author(s):  
C. P. Bastl ◽  
L. Bressler ◽  
G. Schulman ◽  
M. Mendez ◽  
E. J. Cragoe

With in vivo perfusion we demonstrated that physiological doses of glucocorticoids restore Na and Cl absorption in adrenalectomized rat colon. The absorption is spironolactone and amiloride resistant and is inhibited by the Na-H inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), suggesting that glucocorticoids modulate Na-H antiport. The present in vitro study examines pathways mediated by glucocorticoids in adrenalectomized rat distal colon and rectum. In vivo administration of 2.5 micrograms/100 g body wt dexamethasone did not alter serosal-to-mucosal flux or tissue electrical parameters but restored mucosal-to-serosal flux and net Na and Cl absorption within 2–3 h of administration to levels found in intact rat colon. Transport was not inhibited by 10(-5) M amiloride but was eliminated by 10(-5) M EIPA. After 26 h of dexamethasone, an amiloride-resistant short-circuit current was stimulated, accompanied by increased residual ion flux in rectum, but not distal colon, suggesting that a delayed or secondary effect of glucocorticoids is stimulation of electrogenic anion secretion. Thus adrenalectomy reduces net ion flux in distal colon by its effect on electroneutral mucosal-to-serosal NaCl flux. Small doses of glucocorticoids completely ameliorate this effect via stimulation of the Na-H antiport. Glucocorticoids maintain basal electroneutral NaCl absorption in distal rat colon.


1998 ◽  
Vol 275 (1) ◽  
pp. R69-R75 ◽  
Author(s):  
Makoto Takada ◽  
Hideko Yai ◽  
Shinji Komazaki

The axolotl, Ambystoma mexicanum, which has no specific calcium-containing sieve layer in the dermis, provides useful material for the study of the effect of Ca2+ on the development of amiloride-blockable active Na+ transport across the skin of amphibians. We raised axolotls in thyroid hormone or aldosterone or cultured the skin with corticoid plus one of several Ca2+ concentrations and found that 1) although the short-circuit current (SCC) was increased by both aldosterone and 3,3′,5-triiodo-l-thyronine in vivo, only corticoid was necessary for such an increase in vitro; 2) the development of the SCC in vitro was both corticoid and Ca2+dependent, because the SCC was well developed with over 100 μM Ca2+ but not with under 10 μM Ca2+ in the presence of corticoid, nor even with 300 μM Ca2+without corticoid; and 3) Ca2+, but not corticoid, was necessary for the formation of cell-to-cell junctions, because the resistance of the skin was well developed with 300 μM Ca2+ without corticoid.


1995 ◽  
Vol 268 (1) ◽  
pp. C218-C226 ◽  
Author(s):  
M. Takada ◽  
H. Yai ◽  
K. Takayama-Arita

The hormone-induced differentiation of an active Na+ transport across larval bullfrog skin during metamorphosis was investigated in vitro and in vivo. In in vitro experiments, EDTA-treated larval dorsal skin from which apical cells were removed was used. Even in the absence of thyroid hormone, corticoids induced the differentiation. Although aldosterone was the most potent hormone, hydrocortisone or corticosterone was also effective. Prolactin inhibited the corticoid-induced differentiation. The differentiation of the transport system coincided almost exactly with the appearance of adult features of the epidermis, namely, the epidermis at 7 days carried the human blood group antigen A, a specific molecular marker of adult-type bullfrog epidermis. The transport system appeared to develop in cells that had been newly generated from basal cells. On the contrary, in in vivo experiments, the effect of amiloride on the short-circuit current of the skin of tadpoles raised in the presence of aldosterone was very small, suggesting that a mechanism exists to inhibit the ability of aldosterone to induce the differentiation of the transport system in vivo.


1991 ◽  
Vol 260 (2) ◽  
pp. C234-C241 ◽  
Author(s):  
S. Das ◽  
M. Garepapaghi ◽  
L. G. Palmer

The effects of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) on apical membrane cation conductances in the toad urinary bladder were investigated. 8-BrcGMP (1 mM) added to the serosal solution increased the amiloride-sensitive short-circuit current (INa) after a delay of 5 min to a steady-state value 1.8 times that of controls achieved after 30 min. Similar effects were seen when the bladders were bathed on the serosal side with a normal NaCl Ringer solution and with a high-K sucrose solution to depolarize the basolateral membrane. Under the latter conditions, the amiloride-sensitive transepithelial conductance increased in parallel with the short-circuit current, indicating stimulation of apical membrane Na channels. The threshold concentration for observing the stimulation of INa was 100 microM, 10-100 times larger than the concentration of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) required to elicit an increase in INa. Currents through an outwardly rectifying Ca-sensitive cation conductance (Iout) were also increased by 1.8-fold relative to controls. This stimulatory effect occurred after a delay of 15 min and reached maximal levels 90-120 min after addition of the nucleotide. The effects of cGMP on INa were not additive with those of 8-BrcAMP or with antidiuretic hormone, an agent known to act by increasing cAMP within the cell. Addition of 1 mM 3-isobutyl-1-methylxanthine to the serosal side of the bladders stimulated INa by 1.3-fold and Iout by 2.4-fold. In both cases, subsequent addition of cGMP produced no further activation of either conductance.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 114 (1) ◽  
pp. 355-364
Author(s):  
J. S. Gibson ◽  
J. C. Ellory ◽  
A. R. Cossins

1. Carp intestine mounted in vitro has a positive serosal potential and a net Na absorption greater than the short-circuit current. 2. At 30°C in vitro, tissues from 10°C-acclimated fish are thought to show heat-damage. 3. When measured at 10°C in vitro, intestine from fish acclimated to 10°C shows a greater rate of sodium transport than that from 30°Cacclimated fish. 4. Mucosal application of amphotericin B, at 10°C in vitro, increases short-circuit current and net Na flux in both 10°C- and 30°C-acclimated fish but does not diminish the difference in Na transport between the two groups, under conditions when the apical membrane permeability is not limiting. 5. It is concluded that the principal acclimatization in carp intestine to low temperature is via an increased basolateral membrane Na pumping capacity.


1982 ◽  
Vol 99 (1) ◽  
pp. 349-362
Author(s):  
M. CHAMBERLIN ◽  
J. E. PHILLIPS

1. Recta of desert locusts were short-circuited and depleted of endogenous substrates by exposing them to saline containing cyclic AMP but no metabolites. Individual substrates were then added to substrate-depleted recta and the change in short-circuit current (Isc) monitored. 2. Proline or glucose (50 mM) caused by far the largest increase in Isc of all substrates tested. Stimulation of the Isc by proline was not dependent upon external sodium, but did require external chloride. 3. Physiological levels of proline also caused a large increase in Isc, while physiological levels of glucose produced a much smaller stimulation. Over 90% of the proline-dependent Isc stimulation can be produced by adding 15 mM proline solely to the lumen side of the tissue. 4. These results are discussed with regard to rectal oxidative metabolism and availability of metabolic substrates in vivo. High levels of proline in Malpighian tubule fluid are probably the major substrate source for rectal Cl−transport. Note:


1988 ◽  
Vol 255 (3) ◽  
pp. G286-G291 ◽  
Author(s):  
R. C. Orlando ◽  
N. A. Tobey ◽  
V. J. Schreiner ◽  
R. D. Readling

The transmural electrical potential difference (PD) was measured in vivo across the buccal mucosa of humans and experimental animals. Mean PD was -31 +/- 2 mV in humans, -34 +/- 2 mV in dogs, -39 +/- 2 mV in rabbits, and -18 +/- 1 mV in hamsters. The mechanisms responsible for this PD were explored in Ussing chambers using dog buccal mucosa. After equilibration, mean PD was -16 +/- 2 mV, short-circuit current (Isc) was 15 +/- 1 microA/cm2, and resistance was 1,090 +/- 100 omega.cm2, the latter indicating an electrically "tight" tissue. Fluxes of [14C]mannitol, a marker of paracellular permeability, varied directly with tissue conductance. The net fluxes of 22Na and 36Cl were +0.21 +/- 0.05 and -0.04 +/- 0.02 mueq/h.cm2, respectively, but only the Na+ flux differed significantly from zero. Isc was reduced by luminal amiloride, serosal ouabain, or by reducing luminal Na+ below 20 mM. This indicated that the Isc was determined primarily by active Na+ absorption and that Na+ traverses the apical membrane at least partly through amiloride-sensitive channels and exits across the basolateral membrane through Na+-K+-ATPase activity. We conclude that buccal mucosa is capable of active electrolyte transport and that this capacity contributes to generation of the buccal PD in vivo.


1993 ◽  
Vol 264 (4) ◽  
pp. C875-C884 ◽  
Author(s):  
T. J. Schmidt ◽  
R. F. Husted ◽  
J. B. Stokes

The A6 cell line derived from the toad kidney forms polarized, highly differentiated epithelial monolayers in culture and has been utilized as an experimental model for studying regulation of transepithelial Na+ transport by aldosterone. In the present study we evaluated the specific role(s) of glucocorticoid and mineralocorticoid receptors in mediating this enhanced electrogenic Na+ transport, which was measured experimentally as an increase in short-circuit current (Isc). Our data demonstrate that specific glucocorticoid agonists (100 nM), including RU 28362 and RU 26988, elicit “mineralocorticoid-like” increases in Isc that are blocked by the glucocorticoid antagonist RU 38486 but are unaffected by mineralocorticoid antagonists including RU 28318 and RU 26752. The stimulatory effects of aldosterone (100 nM) were also blocked by RU 38486 and not by mineralocorticoid antagonists. These data extend earlier studies suggesting that in this cell line aldosterone mediates its physiological effects via binding with relatively low affinity (dissociation constant Kd congruent to 25-50 nM) to glucocorticoid receptors, despite the presence of apparently normal mineralocorticoid receptors. Our in vitro biochemical studies also demonstrate that A6 glucocorticoid receptor complexes can be thermally activated or transformed to DNA binding forms which exhibitaltered elution profiles from anion-exchange resins. Thus, based on several criteria, these amphibian glucocorticoid receptors appear very similar to classical mammalian receptors and are capable of mediating all of the stimulatory effects of aldosterone on net Na+ transport.


Sign in / Sign up

Export Citation Format

Share Document