Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland

1999 ◽  
Vol 276 (6) ◽  
pp. C1261-C1270 ◽  
Author(s):  
Achim D. Gruber ◽  
Kevin D. Schreur ◽  
Hong-Long Ji ◽  
Catherine M. Fuller ◽  
Bendicht U. Pauli

The CLCA family of Ca2+-activated Cl− channels has recently been discovered, with an increasing number of closely related members isolated from different species. Here we report the cloning of the second human homolog, hCLCA2, from a human lung cDNA library. Northern blot and RT-PCR analyses revealed additional expression in trachea and mammary gland. A primary translation product of 120 kDa was cleaved into two cell surface-associated glycoproteins of 86 and 34 kDa in transfected HEK-293 cells. hCLCA2 is the first CLCA homolog for which the transmembrane structure has been systematically studied. Glycosylation site scanning and protease protection assays revealed five transmembrane domains with a large, cysteine-rich, amino-terminal extracellular domain. Whole cell patch-clamp recordings of hCLCA2-transfected HEK-293 cells detected a slightly outwardly rectifying anion conductance that was increased in the presence of the Ca2+ ionophore ionomycin and inhibited by DIDS, dithiothreitol, niflumic acid, and tamoxifen. Expression in human trachea and lung suggests that hCLCA2 may play a role in the complex pathogenesis of cystic fibrosis.

2013 ◽  
Vol 25 (1) ◽  
pp. 314
Author(s):  
K. C. S. Tavares ◽  
C. Feltrin ◽  
I. S. Carneiro ◽  
A. S. Morais ◽  
C. D. Medeiros ◽  
...  

Glucocerebrosidase is a lysosomal enzyme that plays a key role in sphingolipid cleavage, an intermediate in glycolipid metabolism. A recessive mutation in the glucocerebrosidase gene leads to the accumulation of glucosylceramide in macrophages (sphingolipidosis), a lysosomal storage disease known in humans as the Gaucher disease. The enzyme replacement treatment with recombinant human glucocerebrosidase (hGCase) dramatically reduces and reverses symptoms, with the need of lifelong treatment for patients to attain a normal life. Currently, hGCase is very costly, being produced through in vitro expression in Chinese hamster ovary cells or in vivo, in plants. The aim of this study was to develop a model for the production of hGCase in the mammary gland of rats transiently transduced with recombinant adenovirus. A replication-defective adenovirus carrying hGCase was generated using the AdEasy™ adenoviral vector system (Stratagene, La Jolla, CA, USA). The hGCase cDNA (NM_001005741) was in vitro-synthesized and ligated in the XhoI site of the pAdTrack-CMV vector (pAdT-hGCase). The resulting plasmid was recombined with the pAdEasy™ vector in BJ5183 electro-competent cells. The purified pAdE-pAdT-hGCase vector was linearized and transfected into HEK-293 cells for the production of a primary viral stock. Further amplifications and the titration assay were done in HEK-293 cells, monitoring the transduction by the qualitative evaluation of green fluorescent protein (GFP) expression. Following transfection, the HEK-293 cells increasingly expressed the GFP reporter, regulated by a CMV promoter, in tandem with the hGCase cDNA, under another CMV promoter. On Day 18 of gestation, a female rat (Rattus norvegicus) was anesthetized and the 2 left caudal mammary glands were infused with 109 GTU mL–1 of the pAdE-pAdT-hGCase in PBS solution supplemented with 36 mM EGTA. The 2 right caudal mammary glands were infused only with PBS-EGTA (control milk). Milk samples collected from Days 2 through 9 post-partum were mixed with separation buffer (10 mM Tris-HCl, pH 8.0; 10 mM CaCl2) and centrifuged, with the supernatant assayed for hGCase by Western blot using a monoclonal anti-human glucocerebrosidase antibody (sc-166407, Santa Cruz Biotechnology, Santa Cruz, CA, USA). Relative quantification of the hGCase expression was done using the FluorChem FC2 system (Alpha Innotech, San Leandro, CA, USA), with hGCase band intensity being normalized against GAPDH expression. The in vivo expression assay confirmed the production of hGCase in the secreted portion of the rat milk, with a specific band between 50 to 60 kDa observed on the Western blot, and no detection of the protein in the control milk. The hGCase peak production occurred in Days 5 and 6 of lactation, with levels being 35 times greater than on Day 9. An ELISA quantification assay and an enzymatic activity assay for the recombinant hGCase are currently in development. In conclusion, the use of the rat for hGCase transient expression in the milk was proven a valid model for testing the potential use of a mammary gland expression system for the production of a functional human glucocerebrosidase protein.


2005 ◽  
Vol 288 (5) ◽  
pp. H2363-H2374 ◽  
Author(s):  
Risa M. Cohen ◽  
Jason D. Foell ◽  
Ravi C. Balijepalli ◽  
Vaibhavi Shah ◽  
Johannes W. Hell ◽  
...  

Recent studies have identified a growing diversity of splice variants of auxiliary Ca2+ channel Cavβ subunits. The Cavβ1d isoform encodes a putative protein composed of the amino-terminal half of the full-length Cavβ1 isoform and thus lacks the known high-affinity binding site that recognizes the Ca2+ channel α1-subunit, the α-binding pocket. The present study investigated whether the Cavβ1d subunit is expressed at the protein level in heart, and whether it exhibits any of the functional properties typical of full-length Cavβ subunits. On Western blots, an antibody directed against the unique carboxyl terminus of Cavβ1d identified a protein of the predicted molecular mass of 23 kDa from canine and human hearts. Immunocytochemistry and surface-membrane biotinylation experiments in transfected HEK-293 cells revealed that the full-length Cavβ1b subunit promoted membrane trafficking of the pore-forming α1C (Cav1.2)-subunit to the surface membrane, whereas the Cavβ1d subunit did not. Whole cell patch-clamp analysis of transfected HEK-293 cells demonstrated no effect of coexpression of the Cavβ1d with the α1C-subunit compared with the 15-fold larger currents and leftward shift in voltage-dependent activation induced by full-length Cavβ1b coexpression. In contrast, cell-attached patch single-channel studies demonstrated that coexpression of either Cavβ1b or Cavβ1d significantly increased mean open probability four- to fivefold relative to the α1C-channels alone, but only Cavβ1b coexpression increased the number of channels observed per patch. In conclusion, the Cavβ1d isoform is expressed in heart and can modulate the gating of L-type Ca2+ channels, but it does not promote membrane trafficking of the channel complex.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Guo ◽  
Zhenhui Chen ◽  
Peng-Sheng Chen ◽  
Michael Rubart

Background: Small-conductance Ca2+-activated K+ channels (SK channels) have been proposed as antiarrhythmic targets for the treatment of atrial fibrillation. We previously demonstrated that the 5-HT3 receptor antagonist ondansetron inhibits heterologously expressed, human SK2 (hSK2) currents as well as native cardiac SK currents in a physiological extra-/intracellular [K+] gradient at therapeutic (i.e., sub-micromolar) concentrations. A recent study, using symmetrical [K+] conditions, challenged this result. The goal of the present study was to revisit the inhibitory effect of ondansetron on hSK2-mediated currents in symmetrical [K+] conditions.Experimental Approach: The whole-cell patch clamp technique was used to investigate the effects of ondansetron and apamin on hSK2-mediated currents expressed in HEK 293 cells. Currents were measured in symmetrical [K+] conditions in the presence of 100 nM [Ca2+]o.Results: Expression of hSK2 produced inwardly rectifying whole-cell currents in the presence of 400 nM free cytosolic Ca2+. Ondansetron inhibited whole-cell hSK2 currents with IC50 values of 154 and 113 nM at −80 and 40 mV, respectively. Macroscopic current inhibited by ondansetron and current inhibited by apamin exhibited inwardly rectifying current-voltage relationships with similar reversal potentials (apamin, ∼5 mV and ondansetron, ∼2 mV). Ondansetron (1 μM) in the continuing presence of apamin (100 nM) had no effect on hSK2-mediated whole-cell currents. Wild-type HEK 293 cells did not express ondansetron- or apamin-sensitive currents.Conclusion: Ondansetron in sub-micromolar concentrations inhibits hSK2 currents even under altered ionic conditions.


Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

2010 ◽  
Vol 35 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lina Ji ◽  
Abha Chauhan ◽  
Ved Chauhan

2007 ◽  
Vol 454 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Christian Barmeyer ◽  
Jeff Huaqing Ye ◽  
Shafik Sidani ◽  
John Geibel ◽  
Henry J. Binder ◽  
...  
Keyword(s):  
Hek 293 ◽  

Sign in / Sign up

Export Citation Format

Share Document