scholarly journals Inhibition of Small-Conductance, Ca2+-Activated K+ Current by Ondansetron

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Guo ◽  
Zhenhui Chen ◽  
Peng-Sheng Chen ◽  
Michael Rubart

Background: Small-conductance Ca2+-activated K+ channels (SK channels) have been proposed as antiarrhythmic targets for the treatment of atrial fibrillation. We previously demonstrated that the 5-HT3 receptor antagonist ondansetron inhibits heterologously expressed, human SK2 (hSK2) currents as well as native cardiac SK currents in a physiological extra-/intracellular [K+] gradient at therapeutic (i.e., sub-micromolar) concentrations. A recent study, using symmetrical [K+] conditions, challenged this result. The goal of the present study was to revisit the inhibitory effect of ondansetron on hSK2-mediated currents in symmetrical [K+] conditions.Experimental Approach: The whole-cell patch clamp technique was used to investigate the effects of ondansetron and apamin on hSK2-mediated currents expressed in HEK 293 cells. Currents were measured in symmetrical [K+] conditions in the presence of 100 nM [Ca2+]o.Results: Expression of hSK2 produced inwardly rectifying whole-cell currents in the presence of 400 nM free cytosolic Ca2+. Ondansetron inhibited whole-cell hSK2 currents with IC50 values of 154 and 113 nM at −80 and 40 mV, respectively. Macroscopic current inhibited by ondansetron and current inhibited by apamin exhibited inwardly rectifying current-voltage relationships with similar reversal potentials (apamin, ∼5 mV and ondansetron, ∼2 mV). Ondansetron (1 μM) in the continuing presence of apamin (100 nM) had no effect on hSK2-mediated whole-cell currents. Wild-type HEK 293 cells did not express ondansetron- or apamin-sensitive currents.Conclusion: Ondansetron in sub-micromolar concentrations inhibits hSK2 currents even under altered ionic conditions.

2019 ◽  
Author(s):  
Hongfei Chen ◽  
Fangfang Xia ◽  
Zhousheng Jin ◽  
Yuting He ◽  
Zhengjie Chen ◽  
...  

Abstract Background: Bupivacaine blocks many ion channels in the heart muscle, which could cause severe cardiotoxicity. Small conductance calcium-activated potassium type 2 channels (SK2 channels) are widely distributed in the heart cells and are involved in relevant physiological functions. However, whether bupivacaine can inhibit SK2 channels is still unknown. This study investigated the effect of bupivacaine on SK2 channels. Methods: The SK2 channel gene was transfected into human embryonic kidney 293 cells (HEK-293 cells) with Lipofectamine 2000. The whole-cell patch clamp technique was used to study the effect of bupivacaine on SK2 channels. The inhibitory effect of various concentrations of bupivacaine on SK2 currents exhibited a non-linear relation, and the half-maximal inhibitory concentration (IC50) value was determined. Results: Bupivacaine inhibited the SK2 channels reversibly in a dose-dependent manner. The IC50 value of bupivacaine, ropivacaine and lidocaine on the SK2 current was 133.7, 189.3, and 885.8 µM, respectively. The degree of SK2 current inhibition by bupivacaine was dependent on the intracellular concentration of free calcium. Conclusions: The results of this study suggested a new inhibitory effect of bupivacaine on SK2 channels. Future studies should be concerned with the effects of SK2 on bupivacaine cardiotoxicity. Keywords: Bupivacaine, SK2 channel, inhibition, cardiotoxicity, HEK 293.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hongfei Chen ◽  
Zhousheng Jin ◽  
Fangfang Xia ◽  
Zhijian Fu

Abstract Background Bupivacaine blocks many ion channels in the heart muscle, causing severe cardiotoxicity. Small-conductance calcium-activated potassium type 2 channels (SK2 channels) are widely distributed in the heart cells and are involved in relevant physiological functions. However, whether bupivacaine can inhibit SK2 channels is still unclear. This study investigated the effect of bupivacaine on SK2 channels. Methods The SK2 channel gene was transfected into human embryonic kidney 293 cells (HEK-293 cells) with Lipofectamine 2000. The whole-cell patch-clamp technique was used to examine the effect of bupivacaine on SK2 channels. The concentration–response relationship of bupivacaine for inhibiting SK2 currents (0 mV) was fitted to a Hill equation, and the half-maximal inhibitory concentration (IC50) value was determined. Results Bupivacaine inhibited the SK2 channels reversibly in a dose-dependent manner. The IC50 value of bupivacaine, ropivacaine, and lidocaine on SK2 currents was 16.5, 46.5, and 77.8µM, respectively. The degree of SK2 current inhibition by bupivacaine depended on the intracellular concentration of free calcium. Conclusions The results of this study suggested the inhibitory effect of bupivacaine on SK2 channels. Future studies should explore the effects of SK2 on bupivacaine cardiotoxicity.


2007 ◽  
Vol 98 (4) ◽  
pp. 2274-2284 ◽  
Author(s):  
M. Cataldi ◽  
V. Lariccia ◽  
V. Marzaioli ◽  
A. Cavaccini ◽  
G. Curia ◽  
...  

We employed whole cell patch-clamp recordings to establish the effect of Zn2+ on the gating the brain specific, T-type channel isoform CaV3.3 expressed in HEK-293 cells. Zn2+ (300 μM) modified the gating kinetics of this channel without influencing its steady-state properties. When inward Ca2+ currents were elicited by step depolarizations at voltages above the threshold for channel opening, current inactivation was significantly slowed down while current activation was moderately affected. In addition, Zn2+ slowed down channel deactivation but channel recovery from inactivation was only modestly changed. Zn2+ also decreased whole cell Ca2+ permeability to 45% of control values. In the presence of Zn2+, Ca2+ currents evoked by mock action potentials were more persistent than in its absence. Furthermore, computer simulation of action potential generation in thalamic reticular cells performed to model the gating effect of Zn2+ on T-type channels (while leaving the kinetic parameters of voltage-gated Na+ and K+ unchanged) revealed that Zn2+ increased the frequency and the duration of burst firing, which is known to depend on T-type channel activity. In line with this finding, we discovered that chelation of endogenous Zn2+ decreased the frequency of occurrence of ictal-like epileptiform discharges in rat thalamocortical slices perfused with medium containing the convulsant 4-aminopyridine (50 μM). These data demonstrate that Zn2+ modulates CaV3.3 channel gating thus leading to increased neuronal excitability. We also propose that endogenous Zn2+ may have a role in controlling thalamocortical oscillations.


2020 ◽  
Author(s):  
Hongfei Chen ◽  
Fangfang Xia ◽  
Zhousheng Jin ◽  
Zhijian Fu

Abstract Background: Bupivacaine blocks many ion channels in the heart muscle, which could cause severe cardiotoxicity. Small conductance calcium-activated potassium type 2 channels (SK2 channels) are widely distributed in the heart cells and are involved in relevant physiological functions. However, whether bupivacaine can inhibit SK2 channels is still unknown. This study investigated the effect of bupivacaine on SK2 channels.Methods: The SK2 channel gene was transfected into human embryonic kidney 293 cells (HEK-293 cells) with Lipofectamine 2000. The whole-cell patch clamp technique was used to study the effect of bupivacaine on SK2 channels. Concentration-response relationship of bupivacaine for inhibiting SK2 current (0 mV) was fitted to a Hill equation, and the half-maximal inhibitory concentration (IC50) value was determined.Results: Bupivacaine inhibited the SK2 channels reversibly in a dose-dependent manner. The IC50 value of bupivacaine, ropivacaine and lidocaine on the SK2 current was 16.5, 46.5, and 77.8 µM, respectively. The degree of SK2 current inhibition by bupivacaine was dependent on the intracellular concentration of free calcium.Conclusions: The results of this study suggested a new inhibitory effect of bupivacaine on SK2 channels. Future studies should be concerned with the effects of SK2 on bupivacaine cardiotoxicity.


1999 ◽  
Vol 276 (6) ◽  
pp. C1261-C1270 ◽  
Author(s):  
Achim D. Gruber ◽  
Kevin D. Schreur ◽  
Hong-Long Ji ◽  
Catherine M. Fuller ◽  
Bendicht U. Pauli

The CLCA family of Ca2+-activated Cl− channels has recently been discovered, with an increasing number of closely related members isolated from different species. Here we report the cloning of the second human homolog, hCLCA2, from a human lung cDNA library. Northern blot and RT-PCR analyses revealed additional expression in trachea and mammary gland. A primary translation product of 120 kDa was cleaved into two cell surface-associated glycoproteins of 86 and 34 kDa in transfected HEK-293 cells. hCLCA2 is the first CLCA homolog for which the transmembrane structure has been systematically studied. Glycosylation site scanning and protease protection assays revealed five transmembrane domains with a large, cysteine-rich, amino-terminal extracellular domain. Whole cell patch-clamp recordings of hCLCA2-transfected HEK-293 cells detected a slightly outwardly rectifying anion conductance that was increased in the presence of the Ca2+ ionophore ionomycin and inhibited by DIDS, dithiothreitol, niflumic acid, and tamoxifen. Expression in human trachea and lung suggests that hCLCA2 may play a role in the complex pathogenesis of cystic fibrosis.


2001 ◽  
Vol 354 (3) ◽  
pp. 717-725 ◽  
Author(s):  
Zongming ZHANG ◽  
Yufang TANG ◽  
Michael Xi ZHU

Drosophila transient receptor potential (Trp) and its mammalian homologues are postulated to form capacitative Ca2+ entry or store-operated channels. Here we show that expression of murine Trp4 in HEK 293 cells also leads to an increase in inwardly rectifying K+ currents. No similar increase was found in cell lines expressing Trp1, Trp3 or Trp6. Consistent with typical characteristics of inward rectifiers, the K+ currents in Trp4-expressing cells were blocked by low millimolar concentrations of Cs+ and Ba2+, but not by 1.2mM Ca2+, and were only slightly inhibited by 5mM tetraethylammonium. Single channel recordings of excised inside-out patches revealed the presence of two conducting states of 51pS and 94pS in Trp4-expressing cells. The outward current in the excised patches was blocked by 1mM spermine, but not by 1mM Mg2+. How Trp4 expression causes the increase in the K+ currents is not known. We propose that Trp4 either participates in the formation of a novel K+ channel or up-regulates the expression or activity of endogenous inwardly rectifying K+ channels.


Author(s):  
Alice Huang ◽  
Lenah Binmahfouz ◽  
Dale P Hancock ◽  
Paul H Anderson ◽  
Donald T Ward ◽  
...  

Abstract 25-hydroxyvitamin D 1α-hydroxylase (encoded by CYP27B1), which catalyses the synthesis of 1,25-dihydroxyvitamin D3, is subject to negative or positive modulation by extracellular Ca 2+ (Ca 2+o) depending on the tissue. However, the Ca 2+ sensors and underlying mechanisms are unidentified. We tested whether calcium-sensing receptors (CaSRs) mediate Ca 2+o-dependent control of 1α-hydroxylase using HEK-293 cells stably expressing the CaSR (HEK-CaSR cells). In HEK-CaSR cells, but not control HEK-293 cells, co-transfected with reporter genes for CYP27B1-Photinus pyralis (firefly) luciferase and control Renilla luciferase, an increase in Ca 2+o from 0.5 to 3.0 mM induced a 2-3 fold increase in firefly-luciferase activity as well as mRNA and protein levels. Surprisingly, firefly-luciferase was specifically suppressed at Ca 2+o ≥ 5.0 mM, demonstrating biphasic Ca 2+o control. Both phases were mediated by CaSRs as revealed by positive and negative modulators. However, Ca 2+o induced simple monotonic increases in firefly-luciferase and endogenous CYP27B1 mRNA levels, indicating that the inhibitory effect of high Ca 2+o was post-transcriptional. Studies with inhibitors and the CaSR C-terminal mutant T888A identified roles for PKC, phosphorylation of T888, and ERK1/2 in high Ca 2+o-dependent suppression of firefly-luciferase. Blockade of both PKC and ERK1/2 abolished Ca 2+o-stimulated firefly-luciferase, demonstrating that either PKC or ERK1/2 is sufficient to stimulate the CYP27B1 promoter. A key CCAAT box (–74 bp to –68 bp), which is regulated downstream of PKC and ERK1/2 was required for both basal transcription and Ca 2+o-mediated transcriptional upregulation. The CaSR mediates Ca 2+o-dependent transcriptional upregulation of 1α-hydroxylase and an additional CaSR-mediated mechanism is identified by which Ca 2+o can promote luciferase and possibly 1α-hydroxylase breakdown.


Sign in / Sign up

Export Citation Format

Share Document