Effects of hyperglycemia on hepatic gluconeogenic flux during glycogen phosphorylase inhibition in the conscious dog

2004 ◽  
Vol 286 (4) ◽  
pp. E510-E522 ◽  
Author(s):  
Dale S. Edgerton ◽  
Sylvain Cardin ◽  
Doss Neal ◽  
Ben Farmer ◽  
Margaret Lautz ◽  
...  

The aim of these studies was to investigate the effect of hyperglycemia with or without hyperinsulinemia on hepatic gluconeogenic flux, with the hypothesis that inhibition would be greatest with combined hyperglycemia/hyperinsulinemia. A glycogen phosphorylase inhibitor (BAY R3401) was used to inhibit glycogen breakdown in the conscious overnight-fasted dog, and the effects of a twofold rise in plasma glucose level (HI group) accompanied by 1) euinsulinemia (HG group) or 2) a fourfold rise in plasma insulin were assessed over a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion. In the HG group, net hepatic glucose uptake and net hepatic lactate output substantially increased. There was little or no effect on the net hepatic uptake of gluconeogenic precursors other than lactate (amino acids and glycerol) or on the net hepatic uptake of free fatty acids compared with the control group. Consequently, whereas hyperglycemia had little effect on gluconeogenic flux to glucose 6-phosphate (G-6- P), net hepatic gluconeogenic flux was reduced because of increased hepatic glycolytic flux during hyperglycemia. Net hepatic glycogen synthesis was increased by hyperglycemia. The effect of hyperglycemia on gluconeogenic flux to G-6- P and net hepatic gluconeogenic flux was similar. We conclude that, in the absence of appreciable glycogen breakdown, the increase in glycolytic flux that accompanies hyperglycemia results in decreased net carbon flux to G-6- P but no effect on gluconeogenic flux to G-6- P.

1998 ◽  
Vol 274 (5) ◽  
pp. E893-E902 ◽  
Author(s):  
Mary Courtney Moore ◽  
Paul J. Flakoll ◽  
Po-Shiuan Hsieh ◽  
Michael J. Pagliassotti ◽  
Doss W. Neal ◽  
...  

The effect of concomitant intraportal infusion of glucose and gluconeogenic amino acids (AA) on net hepatic glucose uptake (NHGU) and glycogen synthesis was examined in 42-h-fasted dogs. After a basal period, there was a 240-min experimental period during which somatostatin was infused continuously into a peripheral vein and insulin and glucagon (at 3-fold basal and basal rates, respectively) and glucose (18.3 μmol ⋅ kg−1⋅ min−1) were infused intraportally. One group (PoAA, n = 7) received an AA mixture intraportally at 7.6 μmol ⋅ kg−1⋅ min−1, whereas the other group (NoAA, n = 6) did not receive AA. Arterial blood glucose concentrations and hepatic glucose loads were the same in the two groups. NHGU averaged 4.8 ± 2.0 (PoAA) and 9.4 ± 2.0 (NoAA) μmol ⋅ kg−1⋅ min−1( P < 0.05), and tracer-determined hepatic glucose uptake was 4.6 ± 1.6 (PoAA) and 10.0 ± 1.7 (NoAA) μmol ⋅ kg−1⋅ min−1( P < 0.05). AA data for PoAA and NoAA, respectively, were as follows: arterial blood concentrations, 1,578 ± 133 vs. 1,147 ± 86 μM ( P < 0.01); hepatic loads, 56 ± 3 vs. 32 ± 4 μmol ⋅ kg−1⋅ min−1( P < 0.01); and net hepatic uptakes, 14.1 ± 1.4 vs. 5.6 ± 0.4 μmol ⋅ kg−1⋅ min−1( P < 0.01). The rate of net hepatic glycogen synthesis was 7.5 ± 1.9 (PoAA) vs. 10.7 ± 2.3 (NoAA) μmol ⋅ kg−1⋅ min−1( P = 0.1). In a net sense, intraportal gluconeogenic amino acid delivery directed glucose carbon away from the liver. Despite this, net hepatic carbon uptake was equivalent in the presence and absence of amino acid infusion.


1991 ◽  
Vol 260 (2) ◽  
pp. E194-E202 ◽  
Author(s):  
A. Mitrakou ◽  
R. Jones ◽  
Y. Okuda ◽  
J. Pena ◽  
N. Nurjhan ◽  
...  

The present studies were undertaken to quantitate the relative contributions of the indirect and direct pathways for hepatic glycogen repletion and to determine the role of splanchnic tissues in provision of C precursors used for the indirect pathway. For this purpose, we administered oral glucose (1.4 g/kg) enriched with [1-14C]glucose to 18-h fasted dogs and measured net hepatic and net gastrointestinal glucose, lactate, and alanine balance, hepatic and gastrointestinal fractional extraction [( 3H]lactate), release and uptake of lactate, as well as the total amount of hepatic glycogen formed from the oral glucose and the 14C labeling pattern of the glycogen-glucose C. Although net hepatic glucose uptake (8.7 +/- 0.6 g, 27% of the oral load) exceeded the amount of glycogen formed from the oral glucose (6.3 +/- 1.1 g), analysis of radioactivity in C-1 of the glycogen glucose indicated that nearly 50% of the glycogen was formed by the indirect pathway. Net hepatic uptake of lactate (1.4 +/- 0.1 g) and alanine (1.5 +/- 0.1 g) could account for greater than 90% of glycogen formed by the indirect pathway if all of the lactate and alanine taken up by the liver had been incorporated into glycogen. Release of lactate and alanine by splanchnic tissues approximated the amount of lactate and alanine taken up by the liver. However, in addition to taking up lactate, the liver also produced nearly as much lactate as the gastrointestinal tract (1.8 +/- 0.2 vs. 2.0 +/- 0.3 g, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 288 (6) ◽  
pp. E1160-E1167 ◽  
Author(s):  
Masakazu Shiota ◽  
Pietro Galassetti ◽  
Kayano Igawa ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The effect of small amounts of fructose on net hepatic glucose uptake (NHGU) during hyperglycemia was examined in the presence of insulinopenia in conscious 42-h fasted dogs. During the study, somatostatin (0.8 μg·kg−1·min−1) was given along with basal insulin (1.8 pmol·kg−1·min−1) and glucagon (0.5 ng·kg−1·min−1). After a control period, glucose (36.1 μmol·kg−1·min−1) was continuously given intraportally for 4 h with (2.2 μmol·kg−1·min−1) or without fructose. In the fructose group, the sinusoidal blood fructose level (nmol/ml) rose from <16 to 176 ± 11. The infusion of glucose alone (the control group) elevated arterial blood glucose (μmol/ml) from 4.3 ± 0.3 to 11.2 ± 0.6 during the first 2 h after which it remained at 11.6 ± 0.8. In the presence of fructose, glucose infusion elevated arterial blood glucose (μmol/ml) from 4.3 ± 0.2 to 7.4 ± 0.6 during the first 1 h after which it decreased to 6.1 ± 0.4 by 180 min. With glucose infusion, net hepatic glucose balance (μmol·kg−1·min−1) switched from output (8.9 ± 1.7 and 13.3 ± 2.8) to uptake (12.2 ± 4.4 and 29.4 ± 6.7) in the control and fructose groups, respectively. Average NHGU (μmol·kg−1·min−1) and fractional glucose extraction (%) during last 3 h of the test period were higher in the fructose group (30.6 ± 3.3 and 14.5 ± 1.4) than in the control group (15.0 ± 4.4 and 5.9 ± 1.8). Glucose 6-phosphate and glycogen content (μmol glucose/g) in the liver and glucose incorporation into hepatic glycogen (μmol glucose/g) were higher in the fructose (218 ± 2, 283 ± 25, and 109 ± 26, respectively) than in the control group (80 ± 8, 220 ± 31, and 41 ± 5, respectively). In conclusion, small amounts of fructose can markedly reduce hyperglycemia during intraportal glucose infusion by increasing NHGU even when insulin secretion is compromised.


1999 ◽  
Vol 276 (2) ◽  
pp. E295-E302 ◽  
Author(s):  
Mary Courtney Moore ◽  
Po-Shiuan Hsieh ◽  
Paul J. Flakoll ◽  
Doss W. Neal ◽  
Alan D. Cherrington

Concomitant portal infusion of gluconeogenic amino acids (GNGAA) and glucose significantly reduces net hepatic glucose uptake (NHGU), in comparison with NHGU during portal infusion of glucose alone. To determine whether this effect on NHGU is specific to the portal route of GNGAA delivery, somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and intraportal glucose (to increase the hepatic glucose load by ∼50%) were infused for 240 min. GNGAA were infused peripherally into a group of dogs (PeAA), at a rate to match the hepatic GNGAA load in a group of dogs that were given the same GNGAA mixture intraportally (PoAA) at 7.6 μmol ⋅ kg−1 ⋅ min−1(9). The arterial blood glucose concentrations and hepatic glucose loads were the same in the two groups, but NHGU (−0.9 ± 0.2 PoAA and −2.1 ± 0.5 mg ⋅ kg−1 ⋅ min−1in PeAA, P < 0.05) and net hepatic fractional extraction of glucose (2.6 ± 0.7% in PoAA vs. 5.9 ± 1.4% in PeAA, P < 0.05) differed. Neither the hepatic loads nor the net hepatic uptakes of GNGAA were significantly different in the two groups. Net hepatic glycogen synthesis was ∼2.5-fold greater in PeAA than PoAA ( P < 0.05). Intraportal, but not peripheral, amino acid infusion suppresses NHGU and net hepatic glycogen synthesis in response to intraportal glucose infusion.


2009 ◽  
Vol 297 (2) ◽  
pp. E358-E366 ◽  
Author(s):  
Jason J. Winnick ◽  
Zhibo An ◽  
Mary Courtney Moore ◽  
Christopher J. Ramnanan ◽  
Ben Farmer ◽  
...  

To determine the effect of an acute increase in hepatic glycogen on net hepatic glucose uptake (NHGU) and disposition in response to insulin in vivo, studies were performed on two groups of dogs fasted 18 h. During the first 4 h of the study, somatostatin was infused peripherally, while insulin and glucagon were replaced intraportally in basal amounts. Hyperglycemia was brought about by glucose infusion, and either saline ( n = 7) or fructose ( n = 7; to stimulate NHGU and glycogen deposition) was infused intraportally. A 2-h control period then followed, during which the portal fructose and saline infusions were stopped, allowing NHGU and glycogen deposition in the fructose-infused animals to return to rates similar to those of the animals that received the saline infusion. This was followed by a 2-h experimental period, during which hyperglycemia was continued but insulin infusion was increased fourfold in both groups. During the initial 4-h glycogen loading period, NHGU averaged 1.18 ± 0.27 and 5.55 ± 0.53 mg·kg−1·min−1 and glycogen synthesis averaged 0.72 ± 0.24 and 3.98 ± 0.57 mg·kg−1·min−1 in the saline and fructose groups, respectively ( P < 0.05). During the 2-h hyperinsulinemic period, NHGU rose from 1.5 ± 0.4 and 0.9 ± 0.2 to 3.1 ± 0.6 and 2.5 ± 0.5 mg·kg−1·min−1 in the saline and fructose groups, respectively, a change of 1.6 mg·kg−1·min−1 in both groups despite a significantly greater liver glycogen level in the fructose-infused group. Likewise, the metabolic fate of the extracted glucose (glycogen, lactate, or carbon dioxide) was not different between groups. These data indicate that an acute physiological increase in the hepatic glycogen content does not alter liver glucose uptake and storage under hyperglycemic/hyperinsulinemic conditions in the dog.


1993 ◽  
Vol 265 (3) ◽  
pp. E487-E496 ◽  
Author(s):  
M. C. Moore ◽  
G. I. Shulman ◽  
A. Giaccari ◽  
M. J. Pagliassotti ◽  
G. Cline ◽  
...  

We examined the disposition of a continuous 4-h intraduodenal glucose infusion (8 mg.kg-1 x min-1, labeled with [1-13C]glucose and [3-3H]glucose) in nine conscious hepatic-denervated dogs. Cumulative net hepatic uptakes (in grams of glucose equivalents) were 13.7 +/- 2.5 glucose, 3.1 +/- 0.6 gluconeogenic amino acids, and 0.8 +/- 0.1 glycerol. Net hepatic glycogen synthesis totalled 11.0 +/- 0.9 g, 55-62% via the direct pathway. All values were similar to those in hepatic-innervated dogs. Glycogen synthase activity and rate of glycogen synthesis were positively correlated (r2 = 0.913, P < 0.05). Variability in net hepatic glycogen synthesis and the mass of glycogen synthesized via the indirect pathway was reduced in hepatic-denervated dogs (P < 0.05). In conclusion, the glycemic response and rate of net glycogen synthesis during an intraduodenal glucose infusion was no different in hepatic-denervated and -innervated dogs. Net hepatic glucose uptake was sufficient to account for all net hepatic glycogen synthesis and lactate production, consistent with an intrahepatic source of gluconeogenic precursors for glycogen synthesis via the indirect pathway. Hepatic nerves appear responsible for much of the variability in net hepatic glycogen synthesis and in the mass of glycogen synthesized via the indirect pathway in normal dogs.


1995 ◽  
Vol 269 (2) ◽  
pp. E199-E207 ◽  
Author(s):  
O. P. McGuinness ◽  
J. Jacobs ◽  
C. Moran ◽  
B. Lacy

The effect of infection on hepatic uptake and disposal of a continuous (180-min) intravenous glucose infusion (8 mg.kg-1.min-1) was examined in conscious, 54-h-fasted, chronically catheterized dogs. Thirty-six hours before a study, either infection was induced by implantation of an Escherichia coli-containing (INF; 2 x 10(9) organisms/kg body wt; n = 6) fibrinogen clot, or a sterile (SH; n = 6) clot was implanted into the peritoneal cavity. Hepatic glucose metabolism was assessed using tracer ([3-3H]glucose and [U-14C]glucose) and arteriovenous difference techniques. Infection increased the basal rate of glucose appearance (45%); glucose levels were not altered. In response to glucose infusion, average blood glucose levels increased to similar levels (140 +/- 9 vs. 147 +/- 11 mg/dl in INF and SH, respectively), whereas arterial insulin levels were higher in the infected group during the last hour of the glucose infusion (77 +/- 10 vs. 41 +/- 5 microU/ml in INF vs. SH). Infection impaired net hepatic glucose uptake (0.6 +/- 0.5 and 2.7 +/- 0.7 mg.kg-1.min-1 in INF and SH; P < 0.05). The liver remained a persistent lactate consumer (4.1 +/- 1.8 mumol.kg-1.min-1), whereas the sham group became a net producer of lactate (-3.8 +/- 1.3 mumol.kg-1.min-1). Infection decreased net hepatic glycogen deposition by 53%. In conclusion, infection impairs net hepatic glucose uptake and glycogen deposition despite an exaggerated increase in insulin levels.


1996 ◽  
Vol 271 (2) ◽  
pp. E215-E222 ◽  
Author(s):  
M. C. Moore ◽  
L. Rossetti ◽  
M. J. Pagliassotti ◽  
M. Monahan ◽  
C. Venable ◽  
...  

The role of the liver nerves in the disposition of peripherally administered glucose was examined in seven hepatic innervated (HI) and nine hepatic denervated (HD) 42-h-fasted conscious dogs. After a 40-min basal period, there was a 4-h experimental period during which the hepatic glucose load was increased twofold via peripheral glucose infusion. Somatostatin was infused to suppress pancreatic endocrine secretion, and insulin and glucagon were infused intraportally to produce a fourfold increase in insulin and a gradual decrease (approximately 25%) in glucagon. The area under the curve of net hepatic glucose uptake (NHGU) during the glucose infusion period totaled 483 +/- 82 and 335 +/- 32 mg/kg in HD and HI, respectively (P < 0.05). The area under the curve of the hepatic fractional extraction of glucose was 27% greater in HD (P < 0.05). Net hepatic lactate output was similar in the two groups, and net hepatic glycogen synthesis was 3.8 +/- 0.8 vs. 2.7 +/- 0.5 mg.kg dog wt-1.min-1 in HD and HI, respectively (P = 0.13). The direct pathway of glycogen synthesis was responsible for 54-58% of net hepatic glycogen synthesis in both HI and HD (n = 6 for both). In summary 1) NHGU in response to peripheral glucose infusion was approximately 44% greater in HD than in HI, 2) net hepatic glycogen synthesis was enhanced by 41% in HD although the probability of this change was 0.13, and 3) the contribution of the direct pathway to glycogen synthesis was the same in HD and HI. These data are consistent with a role for the liver nerves in regulating the magnitude of NHGU in response to glucose administration. They also indicate that the absence of liver nerves may reduce glycogen turnover during glucose infusion.


2008 ◽  
Vol 294 (2) ◽  
pp. E300-E306 ◽  
Author(s):  
Zhibo An ◽  
Catherine A. DiCostanzo ◽  
Mary C. Moore ◽  
Dale S. Edgerton ◽  
Dominique P. Dardevet ◽  
...  

To determine the role of nitric oxide in regulating net hepatic glucose uptake (NHGU) in vivo, studies were performed on three groups of 42-h-fasted conscious dogs using a nitric oxide donor [3-morpholinosydnonimine (SIN-1)]. The experimental period was divided into period 1 (0–90 min) and period 2 (P2; 90–240 min). At 0 min, somatostatin was infused peripherally, and insulin (4-fold basal) and glucagon (basal) were given intraportally. Glucose was delivered intraportally (22.2 μmol·kg−1·min−1) and peripherally (as needed) to increase the hepatic glucose load twofold basal. At 90 min, an infusion of SIN-1 (4 μg·kg−1·min−1) was started in a peripheral vein (PeSin-1, n = 10) or the portal vein (PoSin-1, n = 12) while the control group received saline (SAL, n = 8). Both peripheral and portal infusion of SIN-1, unlike saline, significantly reduced systolic and diastolic blood pressure. Heart rate rose in PeSin-1 and PoSin-1 (96 ± 5 to 120 ± 10 and 88 ± 6 to 107 ± 5 beats/min, respectively, P < 0.05) but did not change in response to saline. NHGU during P2 was 31.0 ± 2.4 and 29.9 ± 2.0 μmol·kg−1·min−1 in SAL and PeSin-1, respectively but was 23.7 ± 1.7 in PoSin-1 ( P < 0.05). Net hepatic carbon retention during P2 was significantly lower in PoSin-1 than SAL or PeSin-1 (21.4 ± 1.2 vs. 27.1 ± 1.5 and 26.1 ± 1.0 μmol·kg−1·min−1). Nonhepatic glucose uptake did not change in response to saline or SIN-1 infusion. In conclusion, portal but not peripheral infusion of the nitric oxide donor SIN-1 inhibited NHGU.


1984 ◽  
Vol 247 (3) ◽  
pp. E362-E369 ◽  
Author(s):  
M. A. Davis ◽  
P. E. Williams ◽  
A. D. Cherrington

The present experiments were undertaken to assess lactate and gluconeogenic precursor metabolism in the 30 h following consumption of a mixed meal by the overnight-fasted, conscious dog. The arterial glucose level rose by a maximum of 13 mg/dl 4 h after the meal and had returned to control levels by 12 h. Hepatic glucose production was suppressed for 12 h after feeding, but net hepatic glucose uptake did not occur. The arterial lactate level rose from 0.55 +/- 0.10 to 1.28 +/- 0.14 mM within 1 h of feeding and remained elevated for 12 h. Net hepatic lactate production, measured with an A-V difference technique, rose from 3.5 +/- 2.8 to 19.4 +/- 3.1 mumol X kg-1 X min-1 h after the meal and declined slowly over the next 22 h. The liver then began to consume lactate so that at 30 h net hepatic uptake was 5.7 +/- 0.5 mumol X kg-1 X min-1. The total hepatic uptake of the gluconeogenic amino acids (alanine, glycine, serine, threonine) increased from 5.3 +/- 0.8 to 11.5 +/- 2.5 mumol X kg-1 X min-1 at 1 h and remained elevated for 4 h. The arterial alanine level rose from 0.36 +/- 0.03 to 0.51 +/- 0.04 mM at 2 h and remained elevated for 18 h. Insulin increased from 11 +/- 2 microU/ml to a maximum of 44 +/- 5 4 h after the meal, and the glucagon level rose from 59 +/- 8 pg/ml to a maximum of 150 +/- 22 1 h after feeding.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document