Differential effect of amino acid infusion route on net hepatic glucose uptake in the dog

1999 ◽  
Vol 276 (2) ◽  
pp. E295-E302 ◽  
Author(s):  
Mary Courtney Moore ◽  
Po-Shiuan Hsieh ◽  
Paul J. Flakoll ◽  
Doss W. Neal ◽  
Alan D. Cherrington

Concomitant portal infusion of gluconeogenic amino acids (GNGAA) and glucose significantly reduces net hepatic glucose uptake (NHGU), in comparison with NHGU during portal infusion of glucose alone. To determine whether this effect on NHGU is specific to the portal route of GNGAA delivery, somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and intraportal glucose (to increase the hepatic glucose load by ∼50%) were infused for 240 min. GNGAA were infused peripherally into a group of dogs (PeAA), at a rate to match the hepatic GNGAA load in a group of dogs that were given the same GNGAA mixture intraportally (PoAA) at 7.6 μmol ⋅ kg−1 ⋅ min−1(9). The arterial blood glucose concentrations and hepatic glucose loads were the same in the two groups, but NHGU (−0.9 ± 0.2 PoAA and −2.1 ± 0.5 mg ⋅ kg−1 ⋅ min−1in PeAA, P < 0.05) and net hepatic fractional extraction of glucose (2.6 ± 0.7% in PoAA vs. 5.9 ± 1.4% in PeAA, P < 0.05) differed. Neither the hepatic loads nor the net hepatic uptakes of GNGAA were significantly different in the two groups. Net hepatic glycogen synthesis was ∼2.5-fold greater in PeAA than PoAA ( P < 0.05). Intraportal, but not peripheral, amino acid infusion suppresses NHGU and net hepatic glycogen synthesis in response to intraportal glucose infusion.

1998 ◽  
Vol 274 (5) ◽  
pp. E893-E902 ◽  
Author(s):  
Mary Courtney Moore ◽  
Paul J. Flakoll ◽  
Po-Shiuan Hsieh ◽  
Michael J. Pagliassotti ◽  
Doss W. Neal ◽  
...  

The effect of concomitant intraportal infusion of glucose and gluconeogenic amino acids (AA) on net hepatic glucose uptake (NHGU) and glycogen synthesis was examined in 42-h-fasted dogs. After a basal period, there was a 240-min experimental period during which somatostatin was infused continuously into a peripheral vein and insulin and glucagon (at 3-fold basal and basal rates, respectively) and glucose (18.3 μmol ⋅ kg−1⋅ min−1) were infused intraportally. One group (PoAA, n = 7) received an AA mixture intraportally at 7.6 μmol ⋅ kg−1⋅ min−1, whereas the other group (NoAA, n = 6) did not receive AA. Arterial blood glucose concentrations and hepatic glucose loads were the same in the two groups. NHGU averaged 4.8 ± 2.0 (PoAA) and 9.4 ± 2.0 (NoAA) μmol ⋅ kg−1⋅ min−1( P < 0.05), and tracer-determined hepatic glucose uptake was 4.6 ± 1.6 (PoAA) and 10.0 ± 1.7 (NoAA) μmol ⋅ kg−1⋅ min−1( P < 0.05). AA data for PoAA and NoAA, respectively, were as follows: arterial blood concentrations, 1,578 ± 133 vs. 1,147 ± 86 μM ( P < 0.01); hepatic loads, 56 ± 3 vs. 32 ± 4 μmol ⋅ kg−1⋅ min−1( P < 0.01); and net hepatic uptakes, 14.1 ± 1.4 vs. 5.6 ± 0.4 μmol ⋅ kg−1⋅ min−1( P < 0.01). The rate of net hepatic glycogen synthesis was 7.5 ± 1.9 (PoAA) vs. 10.7 ± 2.3 (NoAA) μmol ⋅ kg−1⋅ min−1( P = 0.1). In a net sense, intraportal gluconeogenic amino acid delivery directed glucose carbon away from the liver. Despite this, net hepatic carbon uptake was equivalent in the presence and absence of amino acid infusion.


2005 ◽  
Vol 288 (6) ◽  
pp. E1160-E1167 ◽  
Author(s):  
Masakazu Shiota ◽  
Pietro Galassetti ◽  
Kayano Igawa ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The effect of small amounts of fructose on net hepatic glucose uptake (NHGU) during hyperglycemia was examined in the presence of insulinopenia in conscious 42-h fasted dogs. During the study, somatostatin (0.8 μg·kg−1·min−1) was given along with basal insulin (1.8 pmol·kg−1·min−1) and glucagon (0.5 ng·kg−1·min−1). After a control period, glucose (36.1 μmol·kg−1·min−1) was continuously given intraportally for 4 h with (2.2 μmol·kg−1·min−1) or without fructose. In the fructose group, the sinusoidal blood fructose level (nmol/ml) rose from <16 to 176 ± 11. The infusion of glucose alone (the control group) elevated arterial blood glucose (μmol/ml) from 4.3 ± 0.3 to 11.2 ± 0.6 during the first 2 h after which it remained at 11.6 ± 0.8. In the presence of fructose, glucose infusion elevated arterial blood glucose (μmol/ml) from 4.3 ± 0.2 to 7.4 ± 0.6 during the first 1 h after which it decreased to 6.1 ± 0.4 by 180 min. With glucose infusion, net hepatic glucose balance (μmol·kg−1·min−1) switched from output (8.9 ± 1.7 and 13.3 ± 2.8) to uptake (12.2 ± 4.4 and 29.4 ± 6.7) in the control and fructose groups, respectively. Average NHGU (μmol·kg−1·min−1) and fractional glucose extraction (%) during last 3 h of the test period were higher in the fructose group (30.6 ± 3.3 and 14.5 ± 1.4) than in the control group (15.0 ± 4.4 and 5.9 ± 1.8). Glucose 6-phosphate and glycogen content (μmol glucose/g) in the liver and glucose incorporation into hepatic glycogen (μmol glucose/g) were higher in the fructose (218 ± 2, 283 ± 25, and 109 ± 26, respectively) than in the control group (80 ± 8, 220 ± 31, and 41 ± 5, respectively). In conclusion, small amounts of fructose can markedly reduce hyperglycemia during intraportal glucose infusion by increasing NHGU even when insulin secretion is compromised.


2009 ◽  
Vol 297 (2) ◽  
pp. E358-E366 ◽  
Author(s):  
Jason J. Winnick ◽  
Zhibo An ◽  
Mary Courtney Moore ◽  
Christopher J. Ramnanan ◽  
Ben Farmer ◽  
...  

To determine the effect of an acute increase in hepatic glycogen on net hepatic glucose uptake (NHGU) and disposition in response to insulin in vivo, studies were performed on two groups of dogs fasted 18 h. During the first 4 h of the study, somatostatin was infused peripherally, while insulin and glucagon were replaced intraportally in basal amounts. Hyperglycemia was brought about by glucose infusion, and either saline ( n = 7) or fructose ( n = 7; to stimulate NHGU and glycogen deposition) was infused intraportally. A 2-h control period then followed, during which the portal fructose and saline infusions were stopped, allowing NHGU and glycogen deposition in the fructose-infused animals to return to rates similar to those of the animals that received the saline infusion. This was followed by a 2-h experimental period, during which hyperglycemia was continued but insulin infusion was increased fourfold in both groups. During the initial 4-h glycogen loading period, NHGU averaged 1.18 ± 0.27 and 5.55 ± 0.53 mg·kg−1·min−1 and glycogen synthesis averaged 0.72 ± 0.24 and 3.98 ± 0.57 mg·kg−1·min−1 in the saline and fructose groups, respectively ( P < 0.05). During the 2-h hyperinsulinemic period, NHGU rose from 1.5 ± 0.4 and 0.9 ± 0.2 to 3.1 ± 0.6 and 2.5 ± 0.5 mg·kg−1·min−1 in the saline and fructose groups, respectively, a change of 1.6 mg·kg−1·min−1 in both groups despite a significantly greater liver glycogen level in the fructose-infused group. Likewise, the metabolic fate of the extracted glucose (glycogen, lactate, or carbon dioxide) was not different between groups. These data indicate that an acute physiological increase in the hepatic glycogen content does not alter liver glucose uptake and storage under hyperglycemic/hyperinsulinemic conditions in the dog.


1996 ◽  
Vol 271 (2) ◽  
pp. E215-E222 ◽  
Author(s):  
M. C. Moore ◽  
L. Rossetti ◽  
M. J. Pagliassotti ◽  
M. Monahan ◽  
C. Venable ◽  
...  

The role of the liver nerves in the disposition of peripherally administered glucose was examined in seven hepatic innervated (HI) and nine hepatic denervated (HD) 42-h-fasted conscious dogs. After a 40-min basal period, there was a 4-h experimental period during which the hepatic glucose load was increased twofold via peripheral glucose infusion. Somatostatin was infused to suppress pancreatic endocrine secretion, and insulin and glucagon were infused intraportally to produce a fourfold increase in insulin and a gradual decrease (approximately 25%) in glucagon. The area under the curve of net hepatic glucose uptake (NHGU) during the glucose infusion period totaled 483 +/- 82 and 335 +/- 32 mg/kg in HD and HI, respectively (P < 0.05). The area under the curve of the hepatic fractional extraction of glucose was 27% greater in HD (P < 0.05). Net hepatic lactate output was similar in the two groups, and net hepatic glycogen synthesis was 3.8 +/- 0.8 vs. 2.7 +/- 0.5 mg.kg dog wt-1.min-1 in HD and HI, respectively (P = 0.13). The direct pathway of glycogen synthesis was responsible for 54-58% of net hepatic glycogen synthesis in both HI and HD (n = 6 for both). In summary 1) NHGU in response to peripheral glucose infusion was approximately 44% greater in HD than in HI, 2) net hepatic glycogen synthesis was enhanced by 41% in HD although the probability of this change was 0.13, and 3) the contribution of the direct pathway to glycogen synthesis was the same in HD and HI. These data are consistent with a role for the liver nerves in regulating the magnitude of NHGU in response to glucose administration. They also indicate that the absence of liver nerves may reduce glycogen turnover during glucose infusion.


2000 ◽  
Vol 279 (6) ◽  
pp. E1271-E1277 ◽  
Author(s):  
Mary Courtney Moore ◽  
Po-Shiuan Hsieh ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The glycemic and hormonal responses and net hepatic and nonhepatic glucose uptakes were quantified in conscious 42-h-fasted dogs during a 180-min infusion of glucose at 10 mg · kg−1 · min−1 via a peripheral (Pe10, n = 5) or the portal (Po10, n = 6) vein. Arterial plasma insulin concentrations were not different during the glucose infusion in Pe10 and Po10 (37 ± 6 and 43 ± 12 μU/ml, respectively), and glucagon concentrations declined similarly throughout the two studies. Arterial blood glucose concentrations during glucose infusion were not different between groups (125 ± 13 and 120 ± 6 mg/dl in Pe10 and Po10, respectively). Portal glucose delivery made the hepatic glucose load significantly greater (36 ± 3 vs. 46 ± 5 mg · kg−1 · min−1 in Pe10 vs. Po10, respectively, P < 0.05). Net hepatic glucose uptake (NHGU; 1.1 ± 0.4 vs. 3.1 ± 0.4 mg · kg−1 · min−1) and fractional extraction (0.03 ± 0.01 vs. 0.07 ± 0.01) were smaller ( P < 0.05) in Pe10 than in Po10. Nonhepatic (primarily muscle) glucose uptake was correspondingly increased in Pe10 compared with Po10 (8.9 ± 0.4 vs. 6.9 ± 0.4 mg · kg−1 · min−1, P < 0.05). Approximately one-half of the difference in NHGU between groups could be accounted for by the difference in hepatic glucose load, with the remainder attributable to the effect of the portal signal itself. Even in the absence of somatostatin and fixed hormone concentrations, the portal signal acts to alter partitioning of a glucose load among the tissues, stimulating NHGU and reducing peripheral glucose uptake.


2000 ◽  
Vol 279 (1) ◽  
pp. E108-E115
Author(s):  
Owen P. McGuinness ◽  
Joseph Ejiofor ◽  
D. Brooks Lacy ◽  
Nancy Schrom

We previously reported that infection decreases hepatic glucose uptake when glucose is given as a constant peripheral glucose infusion (8 mg · kg−1· min−1). This impairment persisted despite greater hyperinsulinemia in the infected group. In a normal setting, hepatic glucose uptake can be further enhanced if glucose is given gastrointestinally. Thus the aim of this study was to determine whether hepatic glucose uptake is impaired during an infection when glucose is given gastrointestinally. Thirty-six hours before study, a sham (SH, n = 7) or Escherichia coli-containing (2 × 109organisms/kg; INF; n = 7) fibrin clot was placed in the peritoneal cavity of chronically catheterized dogs. After the 36 h, a glucose bolus (150 mg/kg) followed by a continuous infusion (8 mg · kg−1· min−1) of glucose was given intraduodenally to conscious dogs for 240 min. Tracer ([3-3H]glucose and [U-14C]glucose) and arterial-venous difference techniques were used to assess hepatic and intestinal glucose metabolism. Infection increased hepatic blood flow (35 ± 5 vs. 47 ± 3 ml · kg−1· min−1; SH vs. INF) and basal glucose rate of appearance (2.1 ± 0.2 vs. 3.3 ± 0.1 mg · kg−1· min−1). Arterial insulin concentrations increased similarly in SH and INF during the last hour of glucose infusion (38 ± 8 vs. 46 ± 20 μU/ml), and arterial glucagon concentrations fell (62 ± 14 to 30 ± 3 vs. 624 ± 191 to 208 ± 97 pg/ml). Net intestinal glucose absorption was decreased in INF, attenuating the increase in blood glucose caused by the glucose load. Despite this, net hepatic glucose uptake (1.6 ± 0.8 vs. 2.4 ± 0.9 mg · kg−1· min−1; SH vs. INF) and consequently tracer-determined glycogen synthesis (1.3 ± 0.3 vs. 1.0 ± 0.3 mg · kg−1· min−1) were similar between groups. In summary, infection impairs net glucose absorption, but not net hepatic glucose uptake or glycogen deposition, when glucose is given intraduodenally.


2017 ◽  
Vol 313 (3) ◽  
pp. E273-E283 ◽  
Author(s):  
Justin M. Gregory ◽  
Noelia Rivera ◽  
Guillaume Kraft ◽  
Jason J. Winnick ◽  
Ben Farmer ◽  
...  

The contribution of hormone-independent counterregulatory signals in defense of insulin-induced hypoglycemia was determined in adrenalectomized, overnight-fasted conscious dogs receiving hepatic portal vein insulin infusions at a rate 20-fold basal. Either euglycemia was maintained ( group 1) or hypoglycemia (≈45 mg/dl) was allowed to occur. There were three hypoglycemic groups: one in which hepatic autoregulation against hypoglycemia occurred in the absence of sympathetic nervous system input ( group 2), one in which autoregulation occurred in the presence of norepinephrine (NE) signaling to fat and muscle ( group 3), and one in which autoregulation occurred in the presence of NE signaling to fat, muscle, and liver ( group 4). Average net hepatic glucose balance (NHGB) during the last hour for groups 1–4 was −0.7 ± 0.1, 0.3 ± 0.1 ( P < 0.01 vs. group 1), 0.7 ± 0.1 ( P = 0.01 vs. group 2), and 0.8 ± 0.1 ( P = 0.7 vs. group 3) mg·kg−1·min−1, respectively. Hypoglycemia per se ( group 2) increased NHGB by causing an inhibition of net hepatic glycogen synthesis. NE signaling to fat and muscle ( group 3) increased NHGB further by mobilizing gluconeogenic precursors resulting in a rise in gluconeogenesis. Lowering glucose per se decreased nonhepatic glucose uptake by 8.9 mg·kg−1·min−1, and the addition of increased neural efferent signaling to muscle and fat blocked glucose uptake further by 3.2 mg·kg−1·min−1. The addition of increased neural efferent input to liver did not affect NHGB or nonhepatic glucose uptake significantly. In conclusion, even in the absence of increases in counterregulatory hormones, the body can defend itself against hypoglycemia using glucose autoregulation and increased neural efferent signaling, both of which stimulate hepatic glucose production and limit glucose utilization.


2010 ◽  
Vol 299 (6) ◽  
pp. E887-E898 ◽  
Author(s):  
Katie Colbert Coate ◽  
Melanie Scott ◽  
Ben Farmer ◽  
Mary Courtney Moore ◽  
Marta Smith ◽  
...  

The objective of this study was to assess the response of a large animal model to high dietary fat and fructose (HFFD). Three different metabolic assessments were performed during 13 wk of feeding an HFFD ( n = 10) or chow control (CTR, n = 4) diet: oral glucose tolerance tests (OGTTs; baseline, 4 and 8 wk), hyperinsulinemic-euglycemic clamps (HIEGs; baseline and 10 wk) and hyperinsulinemic-hyperglycemic clamps (HIHGs, 13 wk). The ΔAUC for glucose during the OGTTs more than doubled after 4 and 8 wk of HFFD feeding, and the average glucose infusion rate required to maintain euglycemia during the HIEG clamps decreased by ≈30% after 10 wk of HFFD feeding. These changes did not occur in the CTR group. The HIHG clamps included experimental periods 1 (P1, 0–90 min) and 2 (P2, 90–180 min). During P1, somatostatin, basal intraportal glucagon, 4 × basal intraportal insulin, and peripheral glucose (to double the hepatic glucose load) were infused; during P2, glucose was also infused intraportally (4.0 mg·kg−1·min−1). Net hepatic glucose uptake during P1 and P2 was −0.4 ± 0.1 [output] and 0.2 ± 0.8 mg·kg−1·min−1 in the HFFD group, respectively, and 1.8 ± 0.8 and 3.5 ± 1.0 mg·kg−1·min−1 in the CTR group, respectively ( P < 0.05 vs. HFFD during P1 and P2). Glycogen synthesis through the direct pathway was 0.5 ± 0.2 and 1.5 ± 0.4 mg·kg−1·min−1 in the HFFD and CTR groups, respectively ( P < 0.05 vs. HFFD). In conclusion, chronic consumption of an HFFD diminished the sensitivity of the liver to hormonal and glycemic cues and resulted in a marked impairment in NHGU and glycogen synthesis.


2011 ◽  
Vol 107 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Mary Courtney Moore ◽  
Marta S. Smith ◽  
Cynthia C. Connolly

Studies were carried out on conscious female non-pregnant (NP) and pregnant (P; third-trimester) dogs (n 16; eight animals per group) to define the role of the liver in mixed meal disposition with arteriovenous difference and tracer techniques. Hepatic and hindlimb substrate disposal was assessed for 390 min during and after an intragastric mixed meal infusion labelled with [14C]glucose. The P dogs exhibited postprandial hyperglycaemia compared with NP dogs (area under the curve (AUC; change from basal over 390 min) of arterial plasma glucose: 86 680 (sem 12 140) and 187 990 (sem 33 990) mg/l in NP and P dogs, respectively; P < 0·05). Plasma insulin concentrations did not differ significantly between the groups (AUC: 88 230 (sem 16 314) and 69 750 (sem 19 512) pmol/l in NP and P dogs, respectively). Net hepatic glucose uptake totalled 3691 (sem 508) v. 5081 (sem 1145) mg/100 g liver in NP and P dogs, respectively (P = 0·38). The AUC of glucose oxidation by the gut and hindlimb were not different in NP and P dogs, but hepatic glucose oxidation (84 (sem 13) v. 206 (sem 30) mg/100 g liver) and glycogen synthesis (0·4 (sem 0·5) v. 26 (sem 0·7) g/100 g liver) were greater in P dogs (P < 0·05). The proportion of hepatic glycogen deposited via the direct pathway did not differ between the groups. Hindlimb glucose uptake and skeletal muscle glycogen synthesis was similar between the groups, although final glycogen concentrations were higher in NP dogs (9·6 (sem 0·6) v. 70 (sem 0·6) mg/g muscle; P < 0·05). Thus, hepatic glucose oxidation and glycogen storage were augmented in late pregnancy. Enhanced hepatic glycogen storage following a meal probably facilitates the maintenance of an adequate glucose supply to maternal and fetal tissues during the post-absorptive period.


Sign in / Sign up

Export Citation Format

Share Document