scholarly journals Effect of intravenous amino acids on glutamine and protein kinetics in low-birth-weight preterm infants during the immediate neonatal period

2006 ◽  
Vol 290 (4) ◽  
pp. E622-E630 ◽  
Author(s):  
Mark M. Kadrofske ◽  
Prabhu S. Parimi ◽  
Lourdes L. Gruca ◽  
Satish C. Kalhan

Glutamine may be a conditionally essential amino acid in low-birth-weight (LBW) preterm neonates. Exogenously administered amino acids, by providing anaplerotic carbon into the tricarboxylic acid cycle, could result in greater cataplerotic efflux and glutamine de novo synthesis. The effect of dose and duration of amino acid infusion on glutamine and nitrogen (N) kinetics was examined in LBW infants in the period immediately after birth. Preterm neonates (<32 weeks gestation, birth weights 809–1,755 g) were randomized to initially receive either 480 or 960 μmol·kg−1·h−1 of an intravenous amino acid solution for 19–24 hours, followed by a higher or lower amino acid load for either 5 h or 24 h. Glutamine de novo synthesis, leucine N, phenylalanine, and urea kinetics were determined using stable isotopic tracers. An increase in amino acid infusion from 480 to 960 μmol·kg−1·h−1 for 5 h resulted in decreased glutamine de novo synthesis in every neonate (384.4 ± 38.0 to 368.9 ± 38.2 μmol·kg−1·h−1, P < 0.01) and a lower whole body rate of proteolysis ( P < 0.001) and urea synthesis ( P < 0.001). However, when the increased amino acid infusion was extended for 24 h, glutamine de novo synthesis increased (369.7 ± 92.6 to 483.4 ± 97.5 μmol·kg−1·h−1, P < 0.001), whole body rate of proteolysis did not change, and urea production increased. Decreasing the amino acid load resulted in a decrease in glutamine rate of appearance (Ra) and leucine N Ra, but had no effect on phenylalanine Ra. Acutely stressed LBW infants responded to an increase in amino acid load by transiently suppressing whole body rate of glutamine synthesis, proteolysis, and oxidation of protein. The mechanisms of this transient effect on whole body protein/nitrogen metabolism remain unknown.

1990 ◽  
Vol 79 (5) ◽  
pp. 457-466 ◽  
Author(s):  
Rita J. Louard ◽  
Eugene J. Barrett ◽  
Robert A. Gelfand

1. Using the forearm balance method, together with systemic infusions of l-[ring-2,6-3H]phenylalanine and l-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/ or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.


1994 ◽  
Vol 266 (3) ◽  
pp. E396-E402 ◽  
Author(s):  
T. Brundin ◽  
J. Wahren

The thermic effect of amino acid administration was examined in healthy subjects. Pulmonary and splanchnic oxygen uptake, cardiac output, splanchnic blood flow, and blood temperatures were measured in eight healthy men before and during 2.5 h of intravenous infusion of 600 kJ of a mixture of 19 amino acids. Indirect calorimetry and catheter techniques were used, including thermometry in arterial and a hepatic venous blood. During the infusion, pulmonary oxygen uptake rose progressively from a basal value of 269 +/- 6 to 321 +/- 8 ml/min after 2.5 h. The splanchnic oxygen consumption increased from a basal level of 64 +/- 4 to a peak value of 91 +/- 7 ml/min after 2 h of infusion. The 2.5 h average splanchnic proportion of the amino acid-induced whole body thermogenesis was 51 +/- 11%. Cardiac output increased from 6.2 +/- 0.3 in the basal state to 7.3 +/- 0.4 l/min, whereas the splanchnic blood flow remained unchanged during the infusion period. The arteriohepatic venous oxygen difference increased from 51 +/- 4 in the basal state to 65 +/- 5 ml/l after 2 h of amino acid infusion. The blood temperature rose by approximately 0.25 degrees C during the amino acid infusion, reflecting an increased heat accumulation in the body. It is concluded that the splanchnic tissues account for approximately one-half of the amino acid-induced whole body thermogenesis, that amino acid infusion augments blood flow in the extrasplanchnic but not in the splanchnic tissues, and stimulates the accumulation of heat in the body most likely via a resetting of the central thermosensors.


1998 ◽  
Vol 64 (8) ◽  
pp. 2836-2843 ◽  
Author(s):  
Cengiz Atasoglu ◽  
Carmen Valdés ◽  
Nicola D. Walker ◽  
C. James Newbold ◽  
R. John Wallace

ABSTRACT The influence of peptides and amino acids on ammonia assimilation and de novo synthesis of amino acids by three predominant noncellulolytic species of ruminal bacteria, Prevotella bryantii B14, Selenomonas ruminantiumHD4, and Streptococcus bovis ES1, was determined by growing these bacteria in media containing 15NH4Cl and various additions of pancreatic hydrolysates of casein (peptides) or amino acids. The proportion of cell N and amino acids formed de novo decreased as the concentration of peptides increased. At high concentrations of peptides (10 and 30 g/liter), the incorporation of ammonia accounted for less than 0.16 of bacterial amino acid N and less than 0.30 of total N. At 1 g/liter, which is more similar to peptide concentrations found in the rumen, 0.68, 0.87, and 0.46 of bacterial amino acid N and 0.83, 0.89, and 0.64 of total N were derived from ammonia by P. bryantii, S. ruminantium, andS. bovis, respectively. Concentration-dependent responses were also obtained with amino acids. No individual amino acid was exhausted in any incubation medium. For cultures of P. bryantii, peptides were incorporated and stimulated growth more effectively than amino acids, while cultures of the other species showed no preference for peptides or amino acids. Apparent growth yields increased by between 8 and 57%, depending on the species, when 1 g of peptides or amino acids per liter was added to the medium. Proline synthesis was greatly decreased when peptides or amino acids were added to the medium, while glutamate and aspartate were enriched to a greater extent than other amino acids under all conditions. Thus, the proportion of bacterial protein formed de novo in noncellulolytic ruminal bacteria varies according to species and the form and identity of the amino acid and in a concentration-dependent manner.


1986 ◽  
Vol 250 (4) ◽  
pp. E407-E413 ◽  
Author(s):  
R. A. Gelfand ◽  
M. G. Glickman ◽  
R. Jacob ◽  
R. S. Sherwin ◽  
R. A. DeFronzo

To compare the contributions of splanchnic and skeletal muscle tissues to the disposal of intravenously administered amino acids, regional amino acid exchange was measured across the splanchnic bed and leg in 11 normal volunteers. Postabsorptively, net release of amino acids by leg (largely alanine and glutamine) was complemented by the net splanchnic uptake of amino acids. Amino acid infusion via peripheral vein (0.2 g X kg-1 X h-1) caused a doubling of plasma insulin and glucagon levels and a threefold rise in blood amino acid concentrations. Both splanchnic and leg tissues showed significant uptake of infused amino acids. Splanchnic tissues accounted for approximately 70% of the total body amino acid nitrogen disposal; splanchnic uptake was greatest for the glucogenic amino acids but also included significant quantities of branched-chain amino acids. In contrast, leg amino acid uptake was dominated by the branched-chain amino acids. Based on the measured leg balance, body skeletal muscle was estimated to remove approximately 25-30% of the total infused amino acid load and approximately 65-70% of the infused branched-chain amino acids. Amino acid infusion significantly stimulated both the leg efflux and the splanchnic uptake of glutamine (not contained in the infusate). We conclude that when amino acids are infused peripherally in normal humans, splanchnic viscera (liver and gut) are the major sites of amino acid disposal.


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


1987 ◽  
Vol 72 (s16) ◽  
pp. 27P-28P ◽  
Author(s):  
P.J. Pacy ◽  
K.N. Cheng ◽  
J. Webster ◽  
G.C. Ford ◽  
D. Halliday ◽  
...  

2004 ◽  
Vol 100 (3) ◽  
pp. 634-639 ◽  
Author(s):  
Yasufumi Nakajima ◽  
Akira Takamata ◽  
Takashi Matsukawa ◽  
Daniel I. Sessler ◽  
Yoshihiro Kitamura ◽  
...  

Background Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. Therefore, the authors tested the hypothesis that amino acid infusion increases the thermoregulatory set point. Methods Nine male volunteers each participated on 4 study days in randomized order: (1) intravenous amino acids infused at 4 kJ x kg(-1) x h(-1) for 2.5 h combined with skin-surface warming, (2) amino acid infusion combined with cutaneous cooling, (3) saline infusion combined with skin-surface warming, and (4) saline infusion combined with cutaneous cooling. Results Amino acid infusion increased resting core temperature by 0.3 +/- 0.1 degrees C (mean +/- SD) and oxygen consumption by 18 +/- 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean skin temperature of 34 degrees C) for active cutaneous vasodilation by 0.3 +/- 0.3 degrees C, for sweating by 0.2 +/- 0.2 degrees C, for thermoregulatory vasoconstriction by 0.3 +/- 0.3 degrees C, and for thermogenesis by 0.4 +/- 0.5 degrees C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses. Conclusions Amino acid infusion increased the metabolic rate and the resting core temperature. However, amino acids also produced a synchronous increase in all major autonomic thermoregulatory defense thresholds; the increase in core temperature was identical to the set point increase, even in a cold environment with amble potential to dissipate heat. In subjects with intact thermoregulatory defenses, amino acid-induced hyperthermia seems to result from an increased set point rather than increased metabolic rate per se.


1995 ◽  
Vol 268 (1) ◽  
pp. E75-E84 ◽  
Author(s):  
G. Biolo ◽  
R. Y. Fleming ◽  
S. P. Maggi ◽  
R. R. Wolfe

We have used stable isotopic tracers of amino acids to measure in vivo transmembrane transport of phenylalanine, leucine, lysine, alanine, and glutamine as well as the rates of intracellular amino acid appearance from proteolysis, de novo synthesis, and disappearance to protein synthesis in human skeletal muscle. Calculations were based on data obtained by the arteriovenous catheterization of the femoral vessels and muscle biopsy. We found that the fractional contribution of transport from the bloodstream to the total intracellular amino acid appearance depends on the individual amino acid, varying between 0.63 +/- 0.02 for phenylalanine and 0.22 +/- 0.02 for alanine. Rates of alanine and glutamine de novo synthesis were approximately eight and five times their rate of appearance from protein breakdown, respectively. The model-derived rate of protein synthesis was highly correlated with the same value calculated by means of the tracer incorporation technique. Furthermore, amino acid transport rates were in the range expected from literature values. Consequently, we conclude that our new model provides a valid means of quantifying the important aspects of protein synthesis, breakdown, and amino acid transport in human subjects.


1988 ◽  
Vol 255 (3) ◽  
pp. E366-E373 ◽  
Author(s):  
D. Darmaun ◽  
D. E. Matthews ◽  
D. M. Bier

Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with 140 micrograms.kg-1.h-1 of hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-[1-13C]leucine, L-[phenyl-2H5]-phenylalanine, L-[2-15N]glutamine, and L-[1-13C]alanine tracers 1) before, 2) at 12 h, and 3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein (0.8 g.kg-1.day-1) and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 +/- 1 to 32 +/- 4 micrograms/dl, leucine flux from 83 +/- 3 to 97 +/- 3 mumol.kg-1.h-1, and phenylalanine flux from 34 +/- 1 to 39 +/- 1 (SE) mumol.kg-1.h-1 after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated (64 h). These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose from 325 +/- 28 to 453 +/- 28 mumol.kg-1.h-1 by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased from 207 +/- 13 to 285 +/- 23 mumol.kg-1.h-1 with acute hypercortisolemia and increased further to 475 +/- 59 mumol.kg-1.h-1 at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document