Regulation of vasopressin secretion by ETA and ETB receptors in compartmentalized rat hypothalamo-neurohypophysial explants

2004 ◽  
Vol 286 (4) ◽  
pp. E535-E541 ◽  
Author(s):  
Noreen F. Rossi

The endothelins (ET) have been implicated in vasopressin (AVP) release in vivo and in vitro. The effects of ET in this system are complex, and the net AVP secretory response likely depends on a unique combination of ET isoform, ET receptor subtype, and neural locus. The purpose of these studies was to examine the role of ET receptor subtypes at hypothalamic vs. neurohypophysial sites on somatodendritic and neurohypophysial AVP secretion. Experiments were done in cultured explants of the hypothalamo-neurohypophysial system of Long Evans rats. Either the whole explant (standard) or only the hypothalamus or posterior pituitary (compartmentalized) was exposed to log dose increases (0.01-10 nM) of the agonists ET-1 (ETA selective), ET-3 (nonselective), or IRL-1620 (ETB selective) with or without selective ETA (BQ-123, 2-200 nM) or ETB (IRL-1038, 6-600 nM) receptor antagonism. In standard explants, ET-1 and ET-3 dose-dependently increased, whereas IRL-1620 decreased net AVP release. Hypothalamic ETB receptor activation increased both somatodendritic and neurohypophysial AVP release. At least one intervening synapse was involved, as tetrodotoxin blocked the response. Activation of ETA receptors at the hypothalamic level inhibited, whereas ETA receptor activation at the posterior pituitary stimulated, neurohypophysial AVP secretion. Antagonism of hypothalamic ETA receptors potentiated the stimulatory effect of ET-1 and ET-3 on neurohypophysial secretion, an effect not observed with ETB receptor-induced somatodendritic release of AVP. Thus the response of whole explants reflects the net result of both stimulatory and inhibitory inputs. The integration of these excitatory and inhibitory inputs endows the vasopressinergic system with greater plasticity in its response to physiological and pathophysiological states.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6298
Author(s):  
Rami Lee ◽  
Sun-Hye Choi ◽  
Han-Sung Cho ◽  
Hongik Hwang ◽  
Hyewhon Rhim ◽  
...  

Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.


1998 ◽  
Vol 275 (4) ◽  
pp. E687-E693 ◽  
Author(s):  
Noreen F. Rossi

Because dopamine influences arginine vasopressin (AVP) release, the present studies were designed to ascertain the dopamine receptor subtype that potentiates angiotensin II-induced AVP secretion in cultured hypothalamo-neurohypophysial explants. Dopamine (a nonselective D1/D2 agonist), apomorphine (a D2 ≫ D1 agonist), and SKF-38393 (a selective D1 agonist) dose dependently increased AVP secretion. Maximal AVP release was observed with 5 μM dopamine, 307 ± 66% ⋅ explant−1 ⋅ h−1, 1 μM SKF-38393, 369 ± 41% ⋅ explant−1 ⋅ h−1, and 0.1 μM apomorphine, 374 ± 67% ⋅ explant−1 ⋅ h−1. Selective D1 antagonism with 1 μM SCH-23390 blocked AVP secretion to values no different from basal. Domperidone (D2 antagonist), phenoxybenzamine (nonselective adrenergic antagonist), and prazosin (α1-antagonist) failed to prevent release. D1 antagonism also prevented AVP secretion to 1 μM angiotensin II [angiotensin II, 422 ± 87% ⋅ explant−1 ⋅ h−1vs. angiotensin II plus SCH-23390, 169 ± 28% ⋅ explant−1 ⋅ h−1( P < 0.05)], but D2 and α1-adrenergic blockade did not. In contrast, AT1 receptor inhibition with 0.5 μM losartan blocked angiotensin II- but not dopamine-induced AVP release. AT2antagonism had no effect. Although subthreshold doses of the agonists did not increase AVP secretion (0.05 μM dopamine, 133 ± 44% ⋅ explant−1 ⋅ h−1; 0.01 μM SKF-38393, 116 ± 26% ⋅ explant−1 ⋅ h−1;and 0.001 μM angiotensin II, 104 ± 29% ⋅ explant−1 ⋅ h−1), the combination of dopamine and angiotensin II provoked a significant rise in AVP [420 ± 83% ⋅ explant−1 ⋅ h−1( P < 0.01)]. Similar results were observed with SKF-38393 and angiotensin II, and the AVP response was blocked to basal levels by either D1 or AT1 antagonism. These findings support a role for D1 receptor activation to increase AVP release and mediate angiotensin II-induced AVP release within the hypothalamo-neurohypophysial system. The data also suggest that the combined subthreshold stimulation of receptors that use distinct intracellular pathways can prompt substantial AVP release.


1995 ◽  
Vol 268 (3) ◽  
pp. F455-F460 ◽  
Author(s):  
A. L. Clavell ◽  
A. J. Stingo ◽  
K. B. Margulies ◽  
R. R. Brandt ◽  
J. C. Burnett

Endothelin (ET) is a potent vasoconstrictor peptide of endothelial origin, which at low doses results in renal vasoconstriction and diuresis with variable actions on sodium excretion. The current study conducted in four groups of anesthetized dogs was designed to define the role of the ETA and ETB receptor subtypes in the renal actions of low-dose exogenous ET. Group 1 (n = 4) animals served as time controls. In group 2 (n = 6) a systemic ET-1 (5 ng.kg-1.min-1) infusion mediated renal vasoconstriction, antinatriuresis with increases in proximal fractional reabsorption of sodium, and diuresis with a decrease in urine osmolality. In group 3 (n = 6) intrarenal BQ-123 (4 micrograms.kg-1.min-1), a selective ETA antagonist, abolished the systemic ET-1-mediated changes in renal hemodynamics and unmasked a natriuretic action at the level of the proximal tubule. In contrast, the diuretic response of ET was not altered by BQ-123. In group 4 (n = 6) intrarenal sarafotoxin 6-c, a selective ETB receptor agonist, resulted in a diuretic response without a change in sodium excretion. These studies suggest that the ETA receptor contributes to the renal vasoconstriction, whereas the ETB receptor is largely responsible for the diuretic response during exogenous ET. This study also suggests that at low doses ET is natriuretic in vivo by decreasing proximal tubular reabsorption of sodium independent of ETA or ETB receptor activation.


2000 ◽  
pp. S3-S7 ◽  
Author(s):  
C Bruns ◽  
V Shi ◽  
D Hoyer ◽  
H Schuurman ◽  
G Weckbecker

Graft vessel disease (GVD) is a major cause of graft loss after the first year following transplantation. GVD is a complex, multifunctional process that involves immunological as well as non-immunological events such as ischaemia/reperfusion injury. An important target cell to interfere with the development of GVD is the smooth muscle cell (SMC). Somatostatin (SRIF) analogues have been shown previously to inhibit the proliferation of SMC in vitro and in vivo. We provide evidence that Sandostatin, an octapeptide SRIF analogue that is known to have anti-proliferative properties on SMC proliferation, inhibits vascular remodelling in a rat angioplasty model. Furthermore, in two allotransplantation models, Sandostatin effectively interferes with the development of signs of chronic rejection/GVD. The role of the different SRIF receptor subtypes in chronic graft rejection is currently under investigation.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Cecilia Gotti ◽  
Michael. J. Marks ◽  
Neil S. Millar ◽  
Susan Wonnacott

Nicotinic acetylcholine receptors are members of the Cys-loop family of transmitter-gated ion channels that includes the GABAA, strychnine-sensitive glycine and 5-HT3 receptors [210, 3, 155, 220, 252]. All nicotinic receptors are pentamers in which each of the five subunits contains four α-helical transmembrane domains. Genes encoding a total of 17 subunits (α1-10, β1-4, γ, δ and ε) have been identified [117]. All subunits with the exception of α8 (present in avian species) have been identified in mammals. All α subunits possess two tandem cysteine residues near to the site involved in acetylcholine binding, and subunits not named α lack these residues [155]. The orthosteric ligand binding site is formed by residues within at least three peptide domains on the α subunit (principal component), and three on the adjacent subunit (complementary component). nAChRs contain several allosteric modulatory sites. One such site, for positive allosteric modulators (PAMs) and allosteric agonists, has been proposed to reside within an intrasubunit cavity between the four transmembrane domains [257, 85]; see also [103]). The high resolution crystal structure of the molluscan acetylcholine binding protein, a structural homologue of the extracellular binding domain of a nicotinic receptor pentamer, in complex with several nicotinic receptor ligands (e.g.[33]) and the crystal structure of the extracellular domain of the α1 subunit bound to α-bungarotoxin at 1.94 Å resolution [53], has revealed the orthosteric binding site in detail (reviewed in [210, 117, 37, 193]). Nicotinic receptors at the somatic neuromuscular junction of adult animals have the stoichiometry (α1)2β1δε, whereas an extrajunctional (α1)2β1γδ receptor predominates in embryonic and denervated skeletal muscle and other pathological states. Other nicotinic receptors are assembled as combinations of α(2-6) and &beta(2-4) subunits. For α2, α3, α4 and β2 and β4 subunits, pairwise combinations of α and β (e.g. α3β4 and α4β2) are sufficient to form a functional receptor in vitro, but far more complex isoforms may exist in vivo (reviewed in [94, 91, 155]). There is strong evidence that the pairwise assembly of some α and β subunits can occur with variable stoichiometry [e.g. (α4)2(β2)2 or (α4)3(β2)2] which influences the biophysical and pharmacological properties of the receptor [155]. α5 and β3 subunits lack function when expressed alone, or pairwise, but participate in the formation of functional hetero-oligomeric receptors when expressed as a third subunit with another α and β pair [e.g. α4α5αβ2, α4αβ2β3, α5α6β2, see [155] for further examples]. The α6 subunit can form a functional receptor when co-expressed with β4 in vitro, but more efficient expression ensues from incorporation of a third partner, such as β3 [256]. The α7, α8, and α9 subunits form functional homo-oligomers, but can also combine with a second subunit to constitute a hetero-oligomeric assembly (e.g. α7β2 and α9α10). For functional expression of the α10 subunit, co-assembly with α9 is necessary. The latter, along with the α10 subunit, appears to be largely confined to cochlear and vestibular hair cells. Comprehensive listings of nicotinic receptor subunit combinations identified from recombinant expression systems, or in vivo, are given in [155]. In addition, numerous proteins interact with nicotinic ACh receptors modifying their assembly, trafficking to and from the cell surface, and activation by ACh (reviewed by [154, 9, 115]).The nicotinic receptor Subcommittee of NC-IUPHAR has recommended a nomenclature and classification scheme for nicotinic acetylcholine (nACh) receptors based on the subunit composition of known, naturally- and/or heterologously-expressed nACh receptor subtypes [139]. Headings for this table reflect abbreviations designating nACh receptor subtypes based on the predominant α subunit contained in that receptor subtype. An asterisk following the indicated α subunit denotes that other subunits are known to, or may, assemble with the indicated α subunit to form the designated nACh receptor subtype(s). Where subunit stoichiometries within a specific nACh receptor subtype are known, numbers of a particular subunit larger than 1 are indicated by a subscript following the subunit (enclosed in parentheses – see also [44]).


1997 ◽  
Vol 78 (2) ◽  
pp. 835-847 ◽  
Author(s):  
John E. Spiro

Spiro, John E. Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. J. Neurophysiol. 78: 835–847, 1997. Electric fish generate different types of abrupt modulations of their electric organ discharge (EOD) rhythm to convey specific social signals. Intracellular recordings were made from neurons of the medullary pacemaker nucleus, which generates and transmits the rhythm that drives the EOD, to study the neuronal basis of two such modulations of the regular EOD rhythm, sudden accelerations, and abrupt interruptions. Recordings were both in vivo, and in a new in vitro brain preparation of Hypopomus pinnicaudatus (order Gymnotiformes). In vivo recordings during triggered behaviors indicated that abrupt modulations of the EOD rhythm are generated in the medullary pacemaker nucleus at the level of the relay cells, which are the projection cells of the nucleus, and not the pacemaker cells. In the in vitro brain stem preparation, cells of the pacemaker nucleus were spontaneously and rhythmically active as in the intact animal. Distinct modulations of the pacemaker nucleus rhythm that closely resembled those seen during natural behaviors could be triggered by electrical stimulation of afferent fibers. Modulations of the rhythm also could be triggered by direct pharmacological activation of the relay cells. When non- N-methyl-d-aspartate (NMDA) receptors were activated, relay cells were transiently depolarized and generated bursts of synchronized action potentials. NMDA receptor activation, alternatively, initiated a prolonged depolarization in the relay cells, during which time they failedto relay the regular pacemaker rhythm. The two firing states ofthe relay cell directly correlate with sudden accelerations and abrupt interruptions of the EOD.


2003 ◽  
Vol 81 (6) ◽  
pp. 570-577 ◽  
Author(s):  
Michel Lavallée ◽  
Eric Thorin

Given that circulating ET levels in heart failure, in particular, may reach physiological threshold for coronary constrictor responses, the primary objective of the present review is to consider coronary vessels as an important target for circulating and locally produced endothelin(s). In healthy vessels, ET-1 causes biphasic coronary responses characterized by a transient dilation of large and small arteries followed by a sustained constriction. ETB receptors are pivotal in the early dilation of resistance vessels, whereas dilation of conductance vessels may be a secondary phenomenon triggered by flow increases. Exogenous ET-1 causes coronary constriction almost exclusively through ETA receptor activation. Human and canine large epicardial coronary vessels display significant baseline ET-1 dependent tone in vitro and in vivo, an ETA-dependent process. In contrast, ETB receptors located on smooth muscle cells are apparently less important for producing constrictor responses. NO production may serve as an important counter-regulatory mechanism to limit ET-dependent effects on coronary vessels. Conversely, in a dysfunctional endothelium, the loss of NO may augment ET-1 production and activity. By lifting the ET-dependent burden from coronary vessels, ET receptor blockade should help to ensure a closer match between cardiac metabolic demand and coronary perfusion.Key words: endothelin, ET receptors, coronary vessels, coronary blood flow, nitric oxide, shear stress, atherosclerosis, humans, animals.


1998 ◽  
Vol 274 (1) ◽  
pp. R131-R138 ◽  
Author(s):  
Todd E. Rasmussen ◽  
Michihisa Jougasaki ◽  
Thanom Supaporn ◽  
John W. Hallett ◽  
David P. Brooks ◽  
...  

The endothelin (ET)-B receptor subtype is expressed on vascular endothelial and smooth muscle cells and participates in vasodilatation and vasoconstriction. Controversy exists regarding the role of the ET-B receptor as a mediator of systemic, pulmonary, and renal vasoconstriction in states of marked ET-1 activation. Moreover, the potential activation of endogenous ET-1 with secondary stimulation of the ET-A receptor in response to sarafotoxin S6c (S6c) remains unclear. This study was designed to assess the cardiovascular actions of ET-B activation with S6c in the presence and absence of selective ET-A antagonism with FR-139317 and dual ET-A/ET-B antagonism with SB-209670 in the anesthetized dog. Compared with time control ( n = 5), S6c increased from baseline systemic vascular resistance (SVR) [28 ± 7 vs. 14 ± 3 resistance units (RU), P < 0.05] and pulmonary vascular resistance (PVR) (3.2 ± 0.7 vs. 0.9 ± 0.3 RU, P < 0.05) and decreased cardiac output (CO) (−1.7 ± 0.3 vs. −0.5 ± 0.1 l/min, P < 0.05), with no differences in renal vascular resistance in association with increases in plasma ET-1. S6c also decreased mixed venous oxygen saturation ([Formula: see text]) (56 ± 6 vs. 76 ± 5%, P < 0.05). Selective ET-A receptor antagonism did not affect the actions of S6c, with the exception that ET-A receptor antagonism blocked the increase in SVR to high-dose S6c. Dual ET-A/ET-B receptor antagonism attenuated the increase from baseline in SVR (7 ± 1 vs. 28 ± 7 RU, P < 0.05) and PVR (0.7 ± 0.2 vs. 3.2 ± 0.7 RU, P < 0.05) and decrease from baseline in CO (−0.9 ± 0.1 vs. −1.7 ± 0.3 l/min, P < 0.05) and[Formula: see text] (−7 ± 3 vs. −20 ± 3%, P < 0.05) observed with S6c alone. In summary, this study demonstrates an important role of ET-B receptor activation in vivo, which results in increases in plasma ET-1 and systemic and pulmonary vasoconstriction and reductions in CO and [Formula: see text]. This study also supports a modest role for the ET-A receptor in mediating the systemic vasoconstrictor response to high-dose S6c.


2019 ◽  
Vol 119 (08) ◽  
pp. 1311-1320 ◽  
Author(s):  
Hitoshi Kashiwagi ◽  
Koh-ichi Yuhki ◽  
Yoshitaka Imamichi ◽  
Fumiaki Kojima ◽  
Shima Kumei ◽  
...  

AbstractPlatelets play an important role in both physiological hemostasis and pathological thrombosis. Thromboxane (TX) A2 and prostaglandin (PG) I2 are well known as a potent stimulator and an inhibitor of platelet function, respectively. Recently, PGE2 has also been reported to regulate platelet function via PGE2 receptor subtypes. However, the effect of PGF2α on platelet function remains to be determined. The aim of the present study was to clarify the effect of PGF2α on murine platelet function both in vitro and in vivo. Platelets prepared from wild-type mice (WT platelets) expressed several types of prostanoid receptors, including the PGE2 receptor subtype EP3 and the TXA2 receptor TP, while expression of the PGF2α receptor FP was not detected. In WT platelets, PGF2α potentiated adenosine diphosphate-induced aggregation in a concentration-dependent manner, while PGF2α alone did not induce aggregation. In platelets prepared from mice lacking FP, however, PGF2α-induced potentiation was not significantly different from that in WT platelets. Interestingly, the potentiation was significantly blunted in platelets lacking EP3 or TP and disappeared completely in platelets lacking both EP3 and TP. Accordingly, PGF2α decreased the cyclic adenosine monophosphate level via EP3 and increased the inositol triphosphate level via TP in WT platelets. Intravenously administered PGF2α significantly shortened the bleeding time and aggravated arachidonic acid-induced acute thromboembolism in WT mice, suggesting that PGF2α works as a platelet stimulator also in vivo. In conclusion, PGF2α potentiates platelet aggregation in vitro via EP3 and TP but not FP. Accordingly, PGF2α facilitates hemostasis and thromboembolism in vivo.


Sign in / Sign up

Export Citation Format

Share Document