Modulation of muscle protein synthesis by insulin is maintained during neonatal endotoxemia

2006 ◽  
Vol 291 (1) ◽  
pp. E159-E166 ◽  
Author(s):  
Renan A. Orellana ◽  
Pamela M. J. O'Connor ◽  
Jill A. Bush ◽  
Agus Suryawan ◽  
M. Carole Thivierge ◽  
...  

Sepsis promotes insulin resistance and reduces protein synthesis in skeletal muscle of adults. The effect of sepsis on insulin-stimulated muscle protein synthesis has not been determined in neonates, a highly anabolic population that is uniquely sensitive to insulin. Overnight fasted neonatal pigs were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 μg·kg−1·h−1]. Glucose and amino acids were maintained at fasting levels, insulin was clamped at either fasting or fed (2 or 10 μU/ml) levels, and fractional protein synthesis rates were determined at the end of the infusion. LPS infusion induced a septic-like state, as indicated by a sustained elevation in body temperature, heart rate, and cortisol. At fasting insulin levels, LPS reduced fractional protein synthesis rates in gastrocnemius muscle (−26%) but had no effect on the masseter and heart. By contrast, LPS stimulated liver protein synthesis (+28%). Increasing insulin to fed levels accelerated protein synthesis rates in gastrocnemius (controls by +38%, LPS by +60%), masseter (controls by +50%, LPS by +43%), heart (controls by +34%, LPS by +40%), and diaphragm (controls by +54%, LPS by +29%), and the response to insulin was similar in LPS and controls. Insulin did not alter protein synthesis in liver, kidney, or jejunum in either group. These findings suggest that acute endotoxemia lowers basal fasting muscle protein synthesis in neonates but does not alter the response of protein synthesis to insulin.

2003 ◽  
Vol 284 (1) ◽  
pp. E110-E119 ◽  
Author(s):  
Pamela M. J. O'Connor ◽  
Jill A. Bush ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Teresa A. Davis

Infusion of physiological levels of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates. To determine whether insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonates, insulin secretion was blocked with somatostatin in fasted 7-day-old pigs ( n = 8–12/group) while glucose and glucagon were maintained at fasting levels and insulin was infused to simulate either less than fasting, fasting, intermediate, or fed insulin levels. At each dose of insulin, amino acids were clamped at either the fasting or fed level; at the highest insulin dose, amino acids were also reduced to less than fasting levels. Skeletal muscle protein synthesis was measured using a flooding dose ofl-[4-3H]phenylalanine. Hyperinsulinemia increased protein synthesis in skeletal muscle during hypoaminoacidemia and euaminoacidemia. Hyperaminoacidemia increased muscle protein synthesis during hypoinsulinemia and euinsulinemia. There was a dose-response effect of both insulin and amino acids on muscle protein synthesis. At each insulin dose, hyperaminoacidemia increased muscle protein synthesis. The effects of insulin and amino acids on muscle protein synthesis were largely additive until maximal rates of protein synthesis were achieved. Amino acids enhanced basal protein synthesis rates but did not enhance the sensitivity or responsiveness of muscle protein synthesis to insulin. The results suggest that insulin and amino acids independently stimulate protein synthesis in skeletal muscle of the neonate.


2007 ◽  
Vol 293 (5) ◽  
pp. E1416-E1425 ◽  
Author(s):  
Renán A. Orellana ◽  
Asumthia Jeyapalan ◽  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Hanh V. Nguyen ◽  
...  

In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 μg·kg−1·h−1), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.


2007 ◽  
Vol 293 (2) ◽  
pp. E595-E603 ◽  
Author(s):  
Asumthia S. Jeyapalan ◽  
Renan A. Orellana ◽  
Agus Suryawan ◽  
Pamela M. J. O'Connor ◽  
Hanh V. Nguyen ◽  
...  

Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E·eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E·eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.


1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


1998 ◽  
Vol 275 (5) ◽  
pp. E864-E871 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
David Doyle ◽  
Stuart M. Phillips ◽  
Joaquin Cortiella ◽  
...  

Testosterone administration (T) increases lean body mass and muscle protein synthesis. We investigated the effects of short-term T on leg muscle protein kinetics and transport of selected amino acids by use of a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis (FSR) and breakdown (FBR) rates of skeletal muscle protein were also directly calculated. Seven healthy men were studied before and 5 days after intramuscular injection of 200 mg of testosterone enanthate. Protein synthesis increased twofold after injection ( P < 0.05), whereas protein breakdown was unchanged. FSR and FBR calculations were in accordance, because FSR increased twofold ( P < 0.05) without a concomitant change in FBR. Net balance between synthesis and breakdown became more positive with both methodologies ( P< 0.05) and was not different from zero. T injection increased arteriovenous essential and nonessential nitrogen balance across the leg ( P < 0.05) in the fasted state, without increasing amino acid transport. Thus T administration leads to an increased net protein synthesis and reutilization of intracellular amino acids in skeletal muscle.


2001 ◽  
Vol 281 (5) ◽  
pp. E908-E915 ◽  
Author(s):  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Jill A. Bush ◽  
Teresa A. Davis

In neonatal animals, feeding stimulates skeletal muscle protein synthesis, a response that declines with development. Both the magnitude of the feeding response and its developmental decline can be reproduced by insulin infusion, suggesting that an altered responsiveness to insulin is a primary determinant of the developmental decline in the stimulation of protein synthesis by feeding. In this study, 7- and 26-day-old pigs were either fasted overnight or fed porcine milk after an overnight fast. We examined the abundance and degree of tyrosine phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and IRS-2 in skeletal muscle and, for comparison, liver. We also evaluated the association of IRS-1 and IRS-2 with phosphatidylinositol 3-kinase (PI 3-kinase). The abundance of IR protein in muscle was twofold higher at 7 than at 26 days, but IRS-1 and IRS-2 abundances were similar in muscle of 7- and 26-day-old pigs. The feeding-induced phosphorylations were greater at 7 than at 26 days of age for IR (28- vs. 13-fold), IRS-1 (14- vs. 8-fold), and IRS-2 (21- vs. 12-fold) in muscle. The associations of IRS-1 and IRS-2 with PI 3-kinase were also increased by refeeding to a greater extent at 7 than at 26 days (9- vs. 5-fold and 6- vs. 4-fold, respectively). In liver, the abundance of IR, IRS-1, and IRS-2 was similar at 7 and 26 days of age. Feeding increased the activation of IR, IRS-1, IRS-2, and PI 3-kinase in liver only twofold, and these responses were unaffected by age. Thus our findings demonstrate that the feeding-induced activation of IR, IRS-1, IRS-2, and PI 3-kinase in skeletal muscle decreases with development. Further study is needed to ascertain whether the developmental decline in the feeding-induced activation of early insulin-signaling components contributes to the developmental decline in translation initiation in skeletal muscle.


2002 ◽  
Vol 283 (4) ◽  
pp. E638-E647 ◽  
Author(s):  
Teresa A. Davis ◽  
Marta L. Fiorotto ◽  
Douglas G. Burrin ◽  
Rhonda C. Vann ◽  
Peter J. Reeds ◽  
...  

Studies have shown that protein synthesis in skeletal muscle of neonatal pigs is uniquely sensitive to a physiological rise in both insulin and amino acids. Protein synthesis in cardiac muscle, skin, and spleen is responsive to insulin but not amino acid stimulation, whereas in the liver, protein synthesis responds to amino acids but not insulin. To determine the response of protein synthesis to insulin-like growth factor I (IGF-I) in this model, overnight-fasted 7- and 26-day-old pigs were infused with IGF-I (0, 20, or 50 μg · kg−1 · h−1) to achieve levels within the physiological range, while amino acids and glucose were clamped at fasting levels. Because IGF-I infusion lowers circulating insulin levels, an additional group of high-dose IGF-I-infused pigs was also provided replacement insulin (10 ng · kg−0.66 · min−1). Tissue protein synthesis was measured using a flooding dose ofl-[4-3H]phenylalanine. In 7-day-old pigs, low-dose IGF-I increased protein synthesis by 25–60% in various skeletal muscles as well as in cardiac muscle (+38%), skin (+24%), and spleen (+32%). The higher dose of IGF-I elicited no further increase in protein synthesis above that found with the low IGF-I dose. Insulin replacement did not alter the response of protein synthesis to IGF-I in any tissue. The IGF-I-induced increases in tissue protein synthesis decreased with development. IGF-I infusion, with or without insulin replacement, had no effect on protein synthesis in liver, jejunum, pancreas, or kidney. Thus the magnitude, tissue specificity, and developmental change in the response of protein synthesis to acute physiological increases in plasma IGF-I are similar to those previously observed for insulin. This study provides in vivo data indicating that circulating IGF-I and insulin act on the same signaling components to stimulate protein synthesis and that this response is highly sensitive to stimulation in skeletal muscle of the neonate.


2000 ◽  
Vol 278 (2) ◽  
pp. E273-E279 ◽  
Author(s):  
Melinda Sheffield-Moore ◽  
Robert R. Wolfe ◽  
Dennis C. Gore ◽  
Steven E. Wolf ◽  
Dennis M. Ferrer ◽  
...  

We investigated whether the normal anabolic effects of acute hyperaminoacidemia were maintained after 5 days of oxandrolone (Oxandrin, Ox)-induced anabolism. Five healthy men [22 ± 3 (SD) yr] were studied before and after 5 days of oral Ox (15 mg/day). In each study, a 5-h basal period was followed by a 3-h primed-continuous infusion of a commercial amino acid mixture (10% Travasol). Stable isotopic data from blood and muscle sampling were analyzed using a three-compartment model to calculate muscle protein synthesis and breakdown. Model-derived muscle protein synthesis increased after amino acid infusion in both the control [basal control (BC) vs. control + amino acids (C+AA); P < 0.001] and Ox study [basal Ox (BOx) vs. Ox + amino acids (Ox+AA); P < 0.01], whereas protein breakdown was unchanged. Fractional synthetic rates of muscle protein increased 94% (BC vs. C+AA; P = 0.01) and 53% (BOx vs. Ox+AA; P < 0.01), respectively. We conclude that the normal anabolic effects of acute hyperaminoacidemia are maintained in skeletal muscle undergoing oxandrolone-induced anabolism.


2005 ◽  
Vol 288 (5) ◽  
pp. E914-E921 ◽  
Author(s):  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Scot R. Kimball ◽  
...  

Protein synthesis in skeletal muscle of adult rats increases in response to oral gavage of supraphysiological doses of leucine. However, the effect on protein synthesis of a physiological rise in plasma leucine has not been investigated in neonates, an anabolic population highly sensitive to amino acids and insulin. Therefore, in the current study, fasted pigs were infused intra-arterially with leucine (0, 200, or 400 μmol·kg−1·h−1), and protein synthesis was measured after 60 or 120 min. Protein synthesis was increased in muscle, but not in liver, at 60 min. At 120 min, however, protein synthesis returned to baseline levels in muscle but was reduced below baseline values in liver. The increase in protein synthesis in muscle was associated with increased plasma leucine of 1.5- to 3-fold and no change in plasma insulin. Leucine infusion for 120 min reduced plasma essential amino acid levels. Phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein-1 (4E-BP1), ribosomal protein (rp) S6 kinase, and rpS6 was increased, and the amount of eIF4E associated with its repressor 4E-BP1 was reduced after 60 and 120 min of leucine infusion. No change in these biomarkers of mRNA translation was observed in liver. Thus a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle of neonatal pigs in association with increased eIF4E availability for eIF4F assembly. This response appears to be insulin independent, substrate dependent, and tissue specific. The results suggest that the branched-chain amino acid leucine can act as a nutrient signal to stimulate protein synthesis in skeletal muscle of neonates.


Sign in / Sign up

Export Citation Format

Share Document