Ethanol elimination kinetics in human liver and pig liver in vivo.

1979 ◽  
Vol 237 (4) ◽  
pp. E316 ◽  
Author(s):  
S Keiding ◽  
S Johansen ◽  
I Midtbøll ◽  
A Rabøl ◽  
L Christiansen
1996 ◽  
Vol 76 (04) ◽  
pp. 549-555 ◽  
Author(s):  
Walter A Wuillemin ◽  
C Erik Hack ◽  
Wim K Bleeker ◽  
Bart J Biemond ◽  
Marcel Levi ◽  
...  

SummaryC1-inhibitor (C1Inh), antithrombin III (ATIII), α1-antitrypsin (a1AT), and α2-antiplasmin (a2AP) are known inhibitors of factor XIa (FXIa). However, their precise contribution to FXIa inactivation in vivo is not known. We investigated FXIa inactivation in chimpanzees and assessed the contribution of these inhibitors to FXIa inactivation in patients with presumed FXI activation.Chimpanzees were infused with FXIa and the various FXIa-FXIa inhibitor complexes formed were measured. Most of FXIa was complexed to C1Inh (68%), followed by a2AP (13%), a1AT (10%), and ATIII (9%). Analysis of the plasma elimination kinetics revealed a half-life time of clearance (t1/2) for the FXIa-FXIa inhibitor complexes of 95 to 104 min, except for FXIa-a1AT, which had a t1/2 of 349 min. Due to this long t1/2, FXIa-a1AT complexes were predicted to show the highest levels in plasma samples from patients with activation of FXI. This was indeed shown in patients with disseminated intravascular coagulation, recent myocardial infarction or unstable angina pectoris. We conclude from this study that in vivo C1Inh is the predominant inhibitor of FXIa, but that FXIa-a1 AT complexes due to their relatively long t1/2 may be the best parameter to assess FXI activation in clinical samples.


1999 ◽  
Vol 40 (1) ◽  
pp. 77
Author(s):  
Soon Gu Cho ◽  
Mi Young Kim ◽  
Young Soo Kim ◽  
Won Choi ◽  
Seok Hwan Shin ◽  
...  
Keyword(s):  

2001 ◽  
Vol 29 (4) ◽  
pp. 374-378 ◽  
Author(s):  
Walter A. Wohlgemuth ◽  
G�nther Wamser ◽  
Thomas Reiss ◽  
Theodor Wagner ◽  
Klaus Bohndorf

1995 ◽  
Vol 98 (4) ◽  
pp. 1852-1857 ◽  
Author(s):  
Keith A. Wear ◽  
Brian S. Garra ◽  
Timothy J. Hall

1982 ◽  
Vol 32 (6) ◽  
pp. 586-597 ◽  
Author(s):  
Ulrich Paschen ◽  
Manfred J. Müller ◽  
Hans J. Seitz

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Liu ◽  
Ping Chen ◽  
Xiaojun Du ◽  
Junxia Sun ◽  
Shasha Han

Abstract Background Obtusofolin is the major active ingredient of Catsia tora L., which possesses the activity of improving eyesight and protecting the optic nerve. Investigation on the interaction of obtusofolin with cytochrome P450 enzymes (CYP450s) could provide a reference for the clinical application of obtusofolin. Methods The effect of obtusofolin on the activity of CYP450s was investigated in the presence of 100 μM obtusofolin in pooled human liver microsomes (HLMs) and fitted with the Lineweaver–Burk plots to characterize the specific inhibition model and kinetic parameters. Results Obtusofolin was found to significantly inhibited the activity of CYP3A4, 2C9, and 2E1. In the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM obtusofolin, the inhibition of these CYP450s showed a dose-dependent manner with the IC50 values of 17.1 ± 0.25, 10.8 ± 0.13, and 15.5 ± 0.16 μM, respectively. The inhibition of CYP3A4 was best fitted with the non-competitive inhibition model with the Ki value of 8.82 μM. While the inhibition of CYP2C9 and 2E1 was competitive with the Ki values of 5.54 and 7.79 μM, respectively. After incubating for 0, 5, 10, 15, and 30 min, the inhibition of CYP3A4 was revealed to be time-dependent with the KI value of 4.87 μM− 1 and the Kinact value of 0.0515 min− 1. Conclusions The in vitro inhibitory effect of obtusofolin implying the potential drug-drug interaction between obtusofolin and corresponding substrates, which needs further in vivo validations.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 775
Author(s):  
Jitka Nykodemová ◽  
Anna Šuláková ◽  
Petr Palivec ◽  
Hedvika Češková ◽  
Silvie Rimpelová ◽  
...  

Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran (“Fly”) moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.


Sign in / Sign up

Export Citation Format

Share Document