Reduced and S-carboxymethylated human growth hormone: a probe for diabetogenic action

1984 ◽  
Vol 247 (5) ◽  
pp. E639-E644
Author(s):  
C. M. Cameron ◽  
J. L. Kostyo ◽  
J. A. Rillema ◽  
S. E. Gennick

The biological activity profile of reduced and S-carboxymethylated human growth hormone (RCM-hGH) was determined to establish its suitability for study of the diabetogenic property of hGH. RCM-hGH was found to have greatly attenuated in vivo growth-promoting activity in the 9-day weight-gain test in hypophysectomized rats (approximately 1%) and to have a similar low order of in vitro activity in stimulating amino acid incorporation into the protein of the isolated rat diaphragm. RCM-hGH also only had approximately 1% of the in vitro insulin-like activity of the native hormone on isolated adipose tissue from hypophysectomized rats. In contrast, RCM-hGH retained substantial in vivo diabetogenic activity in the ob/ob mouse, appearing to have approximately 50% of the activity of the native hormone. RCM-hGH was also found to retain significant, although attenuated (25%), in vitro lactogenic activity when tested for the ability to stimulate amino acid incorporation into a casein-rich protein fraction in mouse mammary gland explants. Because RCM-hGH exhibits a high degree of diabetogenic activity, although lacking significant anabolic or insulin-like activities, it will be useful as a "monovalent" probe for the study of the molecular mechanism of the diabetogenic action of GH.

1960 ◽  
Vol 38 (1) ◽  
pp. 1069-1075
Author(s):  
O. J. Lucis ◽  
E. H. Venning

Porcine, monkey, and human growth hormone have no effect on the in vitro secretion of aldosterone by the rat adrenal gland. When monkey growth hormone is injected into hypophysectomized rats, the adrenals of these animals secrete, under in vitro conditions, increased amounts of aldosterone with no change in the secretion rate of corticosterone. The plasma of these rats contains a substance which appears to stimulate the secretion of aldosterone in the adrenals of normal rats.


1960 ◽  
Vol 38 (10) ◽  
pp. 1069-1075 ◽  
Author(s):  
O. J. Lucis ◽  
E. H. Venning

Porcine, monkey, and human growth hormone have no effect on the in vitro secretion of aldosterone by the rat adrenal gland. When monkey growth hormone is injected into hypophysectomized rats, the adrenals of these animals secrete, under in vitro conditions, increased amounts of aldosterone with no change in the secretion rate of corticosterone. The plasma of these rats contains a substance which appears to stimulate the secretion of aldosterone in the adrenals of normal rats.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


2004 ◽  
Vol 100 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Verena M. Leitner ◽  
Davide Guggi ◽  
Alexander H. Krauland ◽  
Andreas Bernkop-Schnürch

2021 ◽  
Vol 478 (19) ◽  
pp. 3527-3537
Author(s):  
Nicole K. Thompson ◽  
Leif T. N. LeClaire ◽  
Samantha Rodriguez Perez ◽  
Warren W. Wakarchuk

We have been developing bacterial expression systems for human mucin-type O-glycosylation on therapeutic proteins, which is initiated by the addition of α-linked GalNAc to serine or threonine residues by enzymes in the GT-27 family of glycosyltransferases. Substrate preference across different isoforms of this enzyme is influenced by isoform-specific amino acid sequences at the site of glycosylation, which we have exploited to engineer production of Core 1 glycan structures in bacteria on human therapeutic proteins. Using RP-HPLC with a novel phenyl bonded phase to resolve intact protein glycoforms, the effect of sequon mutation on O-glycosylation initiation was examined through in vitro modification of the naturally O-glycosylated human interferon α-2b, and a sequon engineered human growth hormone. As part of the development of our glycan engineering in the bacterial expression system we are surveying various orthologues of critical enzymes to ensure complete glycosylation. Here we present an in vitro enzyme kinetic profile of three related GT-27 orthologues on natural and engineered sequons in recombinant human interferon α2b and human growth hormone where we show a significant change in kinetic properties with the amino acid changes. It was found that optimizing the protein substrate amino acid sequence using Isoform Specific O-Glycosylation Prediction (ISOGlyP, http://isoglyp.utep.edu/index.php) resulted in a measurable increase in kcat/KM, thus improving glycosylation efficiency. We showed that the Drosophila orthologue showed superior activity with our human growth hormone designed sequons compared with the human enzyme.


1987 ◽  
Vol 253 (5) ◽  
pp. E508-E514
Author(s):  
J. Weiss ◽  
M. J. Cronin ◽  
M. O. Thorner

Growth hormone (GH) is secreted as pulses in vivo. To understand the signals governing this periodicity, we have established a perifusion-based model of pulsatile GH release. Male rat anterior pituitaries were dispersed and perifused with pulses of human growth hormone-releasing factor-(1--40) (GHRF), with or without a continuous or discontinuous somatostatin tonus. An experiment was composed of a 1-h base-line collection followed by four 3-h cycles; each contained single or paired 10-min infusion(s) of 3 nM GHRF. In testing the impact of somatostatin, the protocol was identical except that 0.3 nM somatostatin was added 30 min into the base-line period and then was either continued throughout the study or withdrawn during the periods of GHRF infusion. GH base lines with somatostatin were lower than vehicle base lines (P less than 0.05). GHRF pulses generated consistent peaks of GH release between 200 and 300 ng. min-1. (10(7) cells)-1, and these peaks were not altered by continuous somatostatin. In contrast, withdrawal of somatostatin during GHRF administration elicited markedly higher GH peaks (P less than 0.05) and more total GH release (P less than 0.05). This response could not be accounted for by the additive effects of GHRF and somatostatin withdrawal.


1974 ◽  
Vol 140 (3) ◽  
pp. 549-556 ◽  
Author(s):  
R. L. Boeckx ◽  
K. Dakshinamurti

The effect of administration of biotin to biotin-deficient rats on protein biosynthesis was studied. Biotin treatment resulted in stimulation by more than twofold of amino acid incorporation into protein, both in vivo and in vitro in rat liver, pancreas, intestinal mucosa and skin. Analysis of the products of amino acid incorporation into liver proteins in vivo and in vitro indicated that the synthesis of some proteins was stimulated more than twofold, but others were not stimulated at all. This indicates a specificity in the stimulation of protein synthesis mediated by biotin.


Sign in / Sign up

Export Citation Format

Share Document