Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure

1991 ◽  
Vol 261 (4) ◽  
pp. E419-E424 ◽  
Author(s):  
R. S. Mazzeo ◽  
P. R. Bender ◽  
G. A. Brooks ◽  
G. E. Butterfield ◽  
B. M. Groves ◽  
...  

Exercise at high altitude is a stress that activates the sympathoadrenal systems, which could affect responses to acute altitude exposure and promote adaptations during chronic altitude exposure. However, catecholamine levels are not clearly described over time at high altitude. In seven male volunteers (23 yr, 72 kg), resting arterial norepinephrine concentrations (ng/ml) on arrival at Pikes Peak (0.338 +/- 0.041) decreased compared with sea-level values (0.525 +/- 0.034) but increased to above sea-level values after 21 days at 4,300 m (0.798 +/- 0.052). Furthermore, during 45 min of constant submaximal exercise, values were similar at sea level (1.670 +/- 0.221) and on acute exposure to 4,300 m (2.123 +/- 0.086) but increased after 21 days of chronic exposure (2.693 +/- 0.216). By contrast, resting arterial epinephrine values (ng/ml) during acute and chronic exposure (0.708 +/- 0.033 vs. 0.448 +/- 0.026) both exceeded those of sea level (0.356 +/- 0.020). During exercise values on arrival were greater than at sea level (0.921 +/- 0.024 vs. 0.397 +/- 0.035) but fell to 0.612 +/- 0.025 ng/ml after 21 days. Exercise norepinephrine levels were related to systemic vascular resistance measurements (r = 0.93), whereas epinephrine levels were related to circulating lactate (r = 0.95). We conclude that during exercise at altitude there is a dissociation between norepinephrine, an indicator of sympathetic neural activity, and epinephrine, an indicator of adrenal medullary response. These actions may account for different metabolic and physiological responses to acute vs. chronic altitude exposure.

1995 ◽  
Vol 269 (1) ◽  
pp. R201-R207 ◽  
Author(s):  
R. S. Mazzeo ◽  
G. A. Brooks ◽  
G. E. Butterfield ◽  
D. A. Podolin ◽  
E. E. Wolfel ◽  
...  

This investigation examined the relationship between alterations in plasma norepinephrine associated with 21 days of high-altitude exposure and muscle sympathetic activity both at rest and during exercise. Healthy sea level residents, divided into a control group (n = 5) receiving a placebo or a drug group (n = 6) receiving 240 mg/day of propranolol, were studied while at sea level, upon arrival (acute), and after 21 days of residence (chronic) at 4,300 m. Arterial norepinephrine levels and net leg uptake and release of norepinephrine were determine both at rest and during 45 min of submaximal exercise via samples collected from femoral arterial and venous catheters. Arterial norepinephrine levels increased significantly after chronic altitude exposure both at rest (84%) and during exercise (174%) compared with sea level and acute values. A net uptake of norepinephrine was found in resting legs at sea level (0.28 +/- 0.05 nmol/min) and with acute exposure (0.07 +/- 0.06 nmol/min); however, a significant switch to net leg norepinephrine release was observed with chronic altitude exposure (0.51 +/- 0.11 nmol/min). With exercise, a net release of norepinephrine by the leg occurred across all conditions with chronic exposure, again eliciting the greatest values (5.3 +/- 0.6, 8.0 +/- 1.7, and 14.4 +/- 3.1 nmol/min for sea level, acute, and chronic exposure, respectively). It was concluded that muscle sympathetic activity is significantly elevated both at rest and during submaximal exercise as a result of chronic high-altitude exposure, and muscle is a major contributor to the increase in plasma norepinephrine levels associated with prolonged altitude exposure. The presence of dense beta-blockade did not alter this adaptation to altitude.


1989 ◽  
Vol 21 (Supplement) ◽  
pp. S61 ◽  
Author(s):  
R. S. Mazzeo ◽  
G. A. Brooks ◽  
J. Sutton ◽  
G. Butterfield ◽  
G. Wolfel ◽  
...  

1980 ◽  
Vol 21 (Supplement) ◽  
pp. S61
Author(s):  
R. S. Mazzeo ◽  
G. A. Brooks ◽  
J. Sutton ◽  
G. Butterfield ◽  
G. Wolfel ◽  
...  

1974 ◽  
Vol 37 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J Raynaud ◽  
J P Martineaud ◽  
J Bordachar ◽  
M C Tillous ◽  
J Durand

1975 ◽  
Vol 39 (2) ◽  
pp. 258-261 ◽  
Author(s):  
L. G. Martin ◽  
J. M. Connors ◽  
J. J. McGrath ◽  
J. Freeman

Rats of various ages (2, 12, 24, and 40 mo of age) were exposed for 4 wk to either a simulated high altitude of 23,000 ft or to a Peoria, Ill., altitude of 650 ft above sea level. Hematocrit ratios, hemoglobin, and erythrocytic 2,3-diphospho-glycerate (2,3-DPG) concentrations were measured. Hematocrit and hemoglobin determinations revealed a decrease in erythrocytic content with increasing age, and the augmented erythropoietic response was seen in all age groups of animals as a result of altitude exposure. The maximal erythrocytic content of hemoglobin in the 40-mo-old animals was significantly lower than that of all other age groups. Erythrocytic 2,3-DPG levels were significantly changed by aging alone. In the 40-mo-old group there was a 35% increase over the next highest sea-level value. However, while erythrocytic 2,3-DPG content increased significantly in all other age groups following altitude exposure, it decreased 46% in the 40-mo-old group.


2020 ◽  
Vol 36 (5) ◽  
pp. 799-810
Author(s):  
Jingdu Tian ◽  
Chuan Liu ◽  
Yuanqi Yang ◽  
Shiyong Yu ◽  
Jie Yang ◽  
...  

2004 ◽  
Vol 286 (1) ◽  
pp. E20-E24 ◽  
Author(s):  
C. M. Maresh ◽  
W. J. Kraemer ◽  
D. A. Judelson ◽  
J. L. VanHeest ◽  
L. Trad ◽  
...  

High-altitude exposure changes the distribution of body water and electrolytes. Arginine vasopressin (AVP) may influence these alterations. The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing altitude exposures. Seven healthy males (age 22 ± 1 yr, height 176 ± 2 cm, mass 75.3 ± 1.8 kg) completed three WDTs: at sea level (SL), after acute altitude exposure (2 days) to 4,300 m (AA), and after prolonged altitude exposure (20 days) to 4,300 m (PA). Body mass, standing and supine blood pressures, plasma osmolality (Posm), and plasma AVP (PAVP) were measured at 0, 12, 16, and 24 h of each WDT. Urine volume was measured at each void throughout testing. Baseline Posm increased from SL to altitude (SL 291.7 ± 0.8 mosmol/kgH2O, AA 299.6 ± 2.2 mosmol/kgH2O, PA 302.3 ± 1.5 mosmol/kgH2O, P < 0.05); however, baseline PAVP measurements were similar. Despite similar Posm values, the maximal PAVP response during the WDT (at 16 h) was greater at altitude than at SL (SL 1.7 ± 0.5 pg/ml, AA 6.4 ± 0.7 pg/ml, PA 8.7 ± 0.9 pg/ml, P < 0.05). In conclusion, hypoxia appeared to alter AVP regulation by raising the osmotic threshold and increasing AVP responsiveness above that threshold.


2005 ◽  
Vol 43 (02) ◽  
pp. 85-91 ◽  
Author(s):  
A. Arancibia ◽  
M.N. Gai ◽  
J. Chávez ◽  
C. Paulos ◽  
E. Pinilla ◽  
...  

Author(s):  
John E Davis ◽  
Dale R Wagner ◽  
Nathan Garvin ◽  
David Moilanen ◽  
Jessica Thorington ◽  
...  

2001 ◽  
Vol 91 (5) ◽  
pp. 2143-2149 ◽  
Author(s):  
Robert S. Mazzeo ◽  
Danielle Donovan ◽  
Monika Fleshner ◽  
Gail E. Butterfield ◽  
Stacy Zamudio ◽  
...  

Interleukin-6 (IL-6), an important cytokine involved in a number of biological processes, is consistently elevated during periods of stress. The mechanisms responsible for the induction of IL-6 under these conditions remain uncertain. This study examined the effect of α-adrenergic blockade on the IL-6 response to acute and chronic high-altitude exposure in women both at rest and during exercise. Sixteen healthy, eumenorrheic women (aged 23.2 ± 1.4 yr) participated in the study. Subjects received either α-adrenergic blockade (prazosin, 3 mg/day) or a placebo in a double-blinded, randomized fashion. Subjects participated in submaximal exercise tests at sea level and on days 1 and 12 at altitude (4,300 m). Resting plasma and 24-h urine samples were collected throughout the duration of the study. At sea level, no differences were found at rest for plasma IL-6 between groups (1.5 ± 0.2 and 1.2 ± 0.3 pg/ml for placebo and blocked groups, respectively). On acute ascent to altitude, IL-6 levels increased significantly in both groups compared with sea-level values (57 and 84% for placebo and blocked groups, respectively). After 12 days of acclimatization, IL-6 levels remained elevated for placebo subjects; however, they returned to sea-level values in the blocked group. α-Adrenergic blockade significantly lowered the IL-6 response to exercise both at sea level (46%) and at altitude (42%) compared with placebo. A significant correlation ( P = 0.004) between resting IL-6 and urinary norepinephrine excretion rates was found over the course of time while at altitude. In conclusion, the results indicate a role for α-adrenergic regulation of the IL-6 response to the stress of both short-term moderate-intensity exercise and hypoxia.


Sign in / Sign up

Export Citation Format

Share Document