The role of RAGE in the pathogenesis of intestinal barrier dysfunction after hemorrhagic shock

2006 ◽  
Vol 291 (4) ◽  
pp. G556-G565 ◽  
Author(s):  
Kathleen G. Raman ◽  
Penny L. Sappington ◽  
Runkuan Yang ◽  
Ryan M. Levy ◽  
Jose M. Prince ◽  
...  

The receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of numerous conditions associated with excessive inflammation. To determine whether RAGE-dependent signaling is important in the development of intestinal barrier dysfunction after hemorrhagic shock and resuscitation (HS/R), C57Bl/6, rage−/−, or congenic rage+/+ mice were subjected to HS/R (mean arterial pressure of 25 mmHg for 3 h) or a sham procedure. Twenty-four hours later, bacterial translocation to mesenteric lymph nodes and ileal mucosal permeability to FITC-labeled dextran were assessed. Additionally, samples of ileum were obtained for immunofluorescence microscopy, and plasma was collected for measuring IL-6 and IL-10 levels. HS/R in C57Bl/6 mice was associated with increased bacterial translocation, ileal mucosal hyperpermeability, and high circulating levels of IL-6. All of these effects were prevented when C57Bl/6 mice were treated with recombinant human soluble RAGE (sRAGE; the extracellular ligand-binding domain of RAGE). HS/R induced bacterial translocation, ileal mucosal hyperpermeability, and high plasma IL-6 levels in rage+/+ but not rage−/− mice. Circulating IL-10 levels were higher in rage−/− compared with rage+/+ mice. These results suggest that activation of RAGE-dependent signaling is a key factor leading to gut mucosal barrier dysfunction after HS/R.

2021 ◽  
Author(s):  
Bercis Imge Ucar ◽  
Gulberk Ucar

Sepsis, as a complex entity, comprises multiple pathophysiological mechanisms which bring about high morbidity and mortality. The previous studies showed that the gastrointestinal tract is damaged during sepsis, and its main symptoms include increased permeability, bacterial translocation (BT), and malabsorption. BT is the invasion of indigenous intestinal bacteria via the gut mucosa to other tissues. It occurs in pathological conditions such as disruption of the intestine’s ecological balance and mucosal barrier permeability, immunosuppression, and oxidative stress through transcellular/paracellular pathways and initiate an excessive systemic inflammatory response. Thereby, recent clinical and preclinical studies focus on the association between sepsis and intestinal barrier dysfunction. This chapter overviews the current knowledge about the molecular basis of BT of the intestine, its role in the progress of sepsis, detection of BT, and actual therapeutic approaches.


2006 ◽  
Vol 51 (9) ◽  
pp. 1549-1556 ◽  
Author(s):  
Desheng Song ◽  
Bin Shi ◽  
Hua Xue ◽  
Yousheng Li ◽  
Xiaodong Yang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Julia Beisner ◽  
Louisa Filipe Rosa ◽  
Valentina Kaden-Volynets ◽  
Iris Stolzer ◽  
Claudia Günther ◽  
...  

Defects in the mucosal barrier have been associated with metabolic diseases such as obesity and non-alcoholic fatty liver disease (NAFLD). Mice fed a Western-style diet (WSD) develop obesity and are characterized by a diet-induced intestinal barrier dysfunction, bacterial endotoxin translocation and subsequent liver steatosis. To examine whether inulin or sodium butyrate could improve gut barrier dysfunction, C57BL/6 mice were fed a control diet or a WSD ± fructose supplemented with either 10% inulin or 5% sodium butyrate for 12 weeks respectively. Inulin and sodium butyrate attenuated hepatosteatitis in the WSD-induced obesity mouse model by reducing weight gain, liver weight, plasma and hepatic triglyceride level. Furthermore, supplementation with inulin or sodium butyrate induced expression of Paneth cell α-defensins and matrix metalloproteinase-7 (MMP7), which was impaired by the WSD and particularly the fructose-added WSD. Effects on antimicrobial peptide function in the ileum were accompanied by induction of β-defensin-1 and tight junction genes in the colon resulting in improved intestinal permeability and endotoxemia. Organoid culture of small intestinal crypts revealed that the short chain fatty acids (SCFA) butyrate, propionate and acetate, fermentation products of inulin, induce Paneth cell α-defensin expression in vitro, and that histone deacetylation and STAT3 might play a role in butyrate-mediated induction of α-defensins. In summary, inulin and sodium butyrate attenuate diet-induced barrier dysfunction and induce expression of Paneth cell antimicrobials. The administration of prebiotic fiber or sodium butyrate could be an interesting therapeutic approach to improve diet-induced obesity.


Shock ◽  
2018 ◽  
Vol 50 (6) ◽  
pp. 640-647 ◽  
Author(s):  
Mitsunori Ikeda ◽  
Kentaro Shimizu ◽  
Hiroshi Ogura ◽  
Takashi Kurakawa ◽  
Eiji Umemoto ◽  
...  

2019 ◽  
Vol 244 ◽  
pp. 69-76
Author(s):  
Jing Zhang ◽  
Xue-Rong Lin ◽  
Yu-Ping Zhang ◽  
Li-Min Zhang ◽  
Hui-Bo Du ◽  
...  

2003 ◽  
Vol 285 (3) ◽  
pp. G621-G629 ◽  
Author(s):  
Runkuan Yang ◽  
Xiaonan Han ◽  
Takashi Uchiyama ◽  
Simon K. Watkins ◽  
Arino Yaguchi ◽  
...  

We sought to determine the role of IL-6 as a mediator of the alterations in gut barrier function that occur after hemorrhagic shock and resuscitation (HS/R). C57Bl/6 wild-type (WT) and IL-6 knockout (KO) mice on a C57Bl/6 background were subjected to either a sham procedure or HS/R. Organ and tissue samples were obtained 4 h after resuscitation. In WT mice, HS/R significantly increased ileal mucosal permeability to fluorescein isothiocyanate-labeled dextran (average molecular mass, 4 kDa) and bacterial translocation to mesenteric lymph nodes. These alterations in gut barrier function were not observed in IL-6 KO animals. HS/R increased ileal steady-state mRNA levels for IL-6, TNF, and IL-10 in WT but not in IL-6 KO mice. Ileal mucosal expression of the tight junction protein, ZO-1, decreased after HS/R in WT but not IL-6 KO mice. Collectively, these data support the view that expression of IL-6 is essential for the development of gut barrier dysfunction after HS/R.


Sign in / Sign up

Export Citation Format

Share Document