Confirmation and Prevention of Intestinal Barrier Dysfunction and Bacterial Translocation Caused by Methotrexate

2006 ◽  
Vol 51 (9) ◽  
pp. 1549-1556 ◽  
Author(s):  
Desheng Song ◽  
Bin Shi ◽  
Hua Xue ◽  
Yousheng Li ◽  
Xiaodong Yang ◽  
...  
2021 ◽  
Author(s):  
Bercis Imge Ucar ◽  
Gulberk Ucar

Sepsis, as a complex entity, comprises multiple pathophysiological mechanisms which bring about high morbidity and mortality. The previous studies showed that the gastrointestinal tract is damaged during sepsis, and its main symptoms include increased permeability, bacterial translocation (BT), and malabsorption. BT is the invasion of indigenous intestinal bacteria via the gut mucosa to other tissues. It occurs in pathological conditions such as disruption of the intestine’s ecological balance and mucosal barrier permeability, immunosuppression, and oxidative stress through transcellular/paracellular pathways and initiate an excessive systemic inflammatory response. Thereby, recent clinical and preclinical studies focus on the association between sepsis and intestinal barrier dysfunction. This chapter overviews the current knowledge about the molecular basis of BT of the intestine, its role in the progress of sepsis, detection of BT, and actual therapeutic approaches.


Shock ◽  
2018 ◽  
Vol 50 (6) ◽  
pp. 640-647 ◽  
Author(s):  
Mitsunori Ikeda ◽  
Kentaro Shimizu ◽  
Hiroshi Ogura ◽  
Takashi Kurakawa ◽  
Eiji Umemoto ◽  
...  

2006 ◽  
Vol 291 (4) ◽  
pp. G556-G565 ◽  
Author(s):  
Kathleen G. Raman ◽  
Penny L. Sappington ◽  
Runkuan Yang ◽  
Ryan M. Levy ◽  
Jose M. Prince ◽  
...  

The receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of numerous conditions associated with excessive inflammation. To determine whether RAGE-dependent signaling is important in the development of intestinal barrier dysfunction after hemorrhagic shock and resuscitation (HS/R), C57Bl/6, rage−/−, or congenic rage+/+ mice were subjected to HS/R (mean arterial pressure of 25 mmHg for 3 h) or a sham procedure. Twenty-four hours later, bacterial translocation to mesenteric lymph nodes and ileal mucosal permeability to FITC-labeled dextran were assessed. Additionally, samples of ileum were obtained for immunofluorescence microscopy, and plasma was collected for measuring IL-6 and IL-10 levels. HS/R in C57Bl/6 mice was associated with increased bacterial translocation, ileal mucosal hyperpermeability, and high circulating levels of IL-6. All of these effects were prevented when C57Bl/6 mice were treated with recombinant human soluble RAGE (sRAGE; the extracellular ligand-binding domain of RAGE). HS/R induced bacterial translocation, ileal mucosal hyperpermeability, and high plasma IL-6 levels in rage+/+ but not rage−/− mice. Circulating IL-10 levels were higher in rage−/− compared with rage+/+ mice. These results suggest that activation of RAGE-dependent signaling is a key factor leading to gut mucosal barrier dysfunction after HS/R.


2007 ◽  
Vol 37 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Pablo Palma ◽  
Nicolas Mihaljevic ◽  
Till Hasenberg ◽  
Michael Keese ◽  
Thomas A. Koeppel

2020 ◽  
Vol 117 (15) ◽  
pp. 8431-8436 ◽  
Author(s):  
Yuxin Wang ◽  
Jun Yang ◽  
Weicang Wang ◽  
Katherine Z. Sanidad ◽  
Maris A. Cinelli ◽  
...  

Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.


Sign in / Sign up

Export Citation Format

Share Document