bacterial translocation
Recently Published Documents


TOTAL DOCUMENTS

1550
(FIVE YEARS 184)

H-INDEX

82
(FIVE YEARS 7)

2022 ◽  
Vol 272 ◽  
pp. 51-60
Author(s):  
Eirini Filidou ◽  
Gesthimani Tarapatzi ◽  
Michail Spathakis ◽  
Panagiotis Papadopoulos ◽  
Charalampos Papadopoulos ◽  
...  

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 243
Author(s):  
Magdalena Pilarczyk-Zurek ◽  
Grzegorz Majka ◽  
Beata Skowron ◽  
Agnieszka Baranowska ◽  
Monika Piwowar ◽  
...  

Elucidating the mechanisms of bacterial translocation is crucial for the prevention and treatment of neonatal sepsis. In the present study, we aimed to evaluate the potential of lactoferrin to inhibit the development of late-onset blood infection in neonates. Our investigation evaluates the role of key stress factors leading to the translocation of intestinal bacteria into the bloodstream and, consequently, the development of life-threatening sepsis. Three stress factors, namely weaning, intraperitoneal administration of Gram-positive cocci and oral intake of Gram-negative rods, were found to act synergistically. We developed a novel model of rat pups sepsis induced by bacterial translocation and observed the inhibition of this process by supplementation of various forms of lactoferrin: iron-depleted (apolactoferrin), iron-saturated (hololactoferrin) and manganese-saturated lactoferrin. Additionally, lactoferrin saturated with manganese significantly increases the Lactobacillus bacterial population, which contributes to the fortification of the intestinal barrier and inhibits the translocation phenomenon. The acquired knowledge can be used to limit the development of sepsis in newborns in hospital neonatal intensive care units.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rahel S. König ◽  
Werner C. Albrich ◽  
Christian R. Kahlert ◽  
Lina Samira Bahr ◽  
Ulrike Löber ◽  
...  

Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed. We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients. Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Brittany Owusu‐Adjei ◽  
Charles Ogagan ◽  
Jordan Smith ◽  
Gabrielle Luiselli ◽  
Mark D. Johnson

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Mayumi Minamisawa ◽  
Yuma Sato ◽  
Eitarou Ishiguro ◽  
Tetsuyuki Taniai ◽  
Taiichi Sakamoto ◽  
...  

In this study, we observed disease progression, changes in the gut microbiota, and interactions among the brain, liver, pancreas, and intestine in a mouse model of Alzheimer’s disease (AD), in addition to attempting to inhibit disease progression through the dietary supplementation of L-arginine and limonoids. Wild-type mice (WC) and AD mice were fed a normal diet (AC), a diet supplemented with L-arginine and limonoids (ALA), or a diet containing only limonoids (AL) for 12–64 weeks. The normal diet-fed WC and AC mice showed a decrease in the diversity of the gut microbiota, with an increase in the Firmicutes/Bacteroidetes ratio, and bacterial translocation. Considerable bacterial translocation to the pancreas and intense inflammation of the pancreas, liver, brain, and intestinal tissues were observed in the AC mice from alterations in the gut microbiota. The ALA diet or AL diet-fed mice showed increased diversity of the bacterial flora and suppressed oxidative stress and inflammatory responses in hepatocytes and pancreatic cells, bacterial translocation, and neurodegeneration of the brain. These findings suggest that L-arginine and limonoids help in maintaining the homeostasis of the gut microbiota, pancreas, liver, brain, and gut in AD mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mercedes Márquez-Coello ◽  
Cristina Ruiz-Sánchez ◽  
Andrés Martín-Aspas ◽  
Clotilde Fernández Gutiérrez Del Álamo ◽  
Francisco Illanes-Álvarez ◽  
...  

ObjectiveEvaluate the expression of B and T cell immunomodulatory molecules in polymorphonuclear neutrophils (PMN) in HIV-infected patients.MethodsHIV load, bacterial translocation and neutrophils’ expression of T [programmed death ligand, interleukin-10+, arginase 1+] and B [BAFF, APRIL] molecules were analyzed in different cohorts and time points: a control group of 25 healthy individuals and two groups of HIV-infected patients. Group 1 of patients included 35 untreated patients, studied at baseline and after antiretroviral therapy (ART). Group 2 was composed of 25 patients with undetectable viral load after a median of 101 months of ART prior to inclusion in the study.ResultsCompared with the control group, group 1 patients showed increased bacterial translocation and their PMN had a significantly higher expression of T and B-cell immunomodulatory molecules, both at baseline and after 12 months of ART. Group 2 patients showed reduced bacterial translocation levels when compared with group 1 patients after 12 months of treatment. PMN expression of B-cell modulators was similar between group 2 patients and healthy controls, although the expression of T-cell modulators remained increased.ConclusionIn HIV-infected patients, the expression of B-cell stimulatory and T-cell suppressive molecules by neutrophils was increased at baseline and after a limited time of therapy. After a prolonged period of ART, only PMNs expression of T-cell immunosuppressive molecules remained elevated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dekai Zheng ◽  
Huimin Liao ◽  
Shuze Chen ◽  
Xiuying Liu ◽  
Chuyin Mao ◽  
...  

BackgroundA growing number of studies have found dysbiosis of the intestinal microbiota in patients with Graves’ disease (GD). The intestinal epithelial barrier serves as the first line of defense, protecting the immune system from excessive stimulation of microbiota and toxins. Most autoimmune diseases are associated with a gut barrier dysfunction (leaky gut) which allows bacterial translocation. However, to date, potential correlations between intestinal barrier dysfunction and GD have not been explored.MethodsSerum lipopolysaccharide (LPS), intestinal fatty acid-binding protein (I-FABP), zonulin, D-lactate, and diamine oxidase (DAO) were measured to assess barrier integrity in 91 patients with GD (61 initial GD and 30 euthyroid GD) and 44 healthy controls. The quality of life (QOL) of patients with GD was assessed using the thyroid-specific patient-reported outcome (ThyPRO-39) questionnaire.ResultsThe serum levels of LPS, I-FABP, zonulin, and D-lactate were significantly higher in patients with initial GD than in healthy controls. Logistic regression analysis revealed that zonulin and D-lactate were independently associated with risk for GD and circulating zonulin could effectively distinguish patients with initial GD from healthy controls. Correlation analyses showed that I-FABP, LPS, and D-lactate were positively associated with FT4 and negatively associated with TSH. In addition, circulating LPS, zonulin, and D-lactate levels were all independent predictors of TRAb levels. Moreover, higher circulating LPS levels in patients with GD were associated with more severe hyperthyroidism (higher concentrations of FT3, FT4, and TRAb and lower TSH concentrations) and worse scores of hyperthyroid and eye symptoms.ConclusionPatients with initial GD show a disrupted intestinal barrier, characterized by elevated levels of leaky gut biomarkers. Increased intestinal permeability and bacterial translocation were associated with TRAb levels and hyperthyroidism in GD. Further research is required to elucidate the underlying mechanisms.


2021 ◽  
Author(s):  
Liwen Gu ◽  
Jie Jiang ◽  
Zhigang Liu ◽  
Qiangqiang Liu ◽  
Jinli Liao ◽  
...  

Abstract BackgroundSepsis or endotoxemia can induce intestinal dysfunction in the epithelial and immune barrier. Th17 cells, a distinct subset of CD4+ T-helper cells, act as “border patrol” in the intestine under pathological condition and in the previous studies, Th17 cells exhibited an ambiguous function in intestinal inflammation. Our study will explore a specific role of Th17 cells and its relevant mechanism in endotoxemia-induced intestinal injury.MethodsLipopolysaccharide was used to establish mouse model of endotoxemia. miR-681 was analyzed by RT-PCR and northern blot analysis and its regulation by HIF-1α was determined by chromatin immunoprecipitation and luciferase reporter assay. Intestinal Th17 cells isolated from endotoxemic mice were quantitatively evaluated by flow cytometry and its recruitment to the intestine controlled by miR-681/CCR6 pathway was assessed by using anti-miRNA treatment and CCR6 knockout mice. Intestinal histopathology, villus length, intestinal inflammation, intestinal permeability, bacterial translocation and survival were investigated, by histology and TUNEL analysis, ELISA, measurement of diamine oxidase, bacterial culture, with or without anti-miR-681 treatment in endotoxemic wild-type and (or) CCR6 knockout mice.ResultsIn this study, we found that miR-681 was significantly promoted in intestinal Th17 cells during endotoxemia, which was dependent on hypoxia-inducible factor-1α (HIF-1α). Interestingly, miR-681 could directly suppress CCR6, which was a critical modulator for Th17 cell recruitment to the intestines. In vivo, anti-miR-681 enhanced survival, increased number of intestinal Th17 cells, reduced crypt and villi apoptosis, decreased intestinal inflammation and bacterial translocation, resulting in protection against endotoxemia-induced intestinal injury in mice. However, CCR6 deficiency could neutralize the beneficial effect of anti-miR-681 on the intestine during endotoxemia, suggesting that the increment of intestinal Th17 cells caused by anti-miR-681 relies on CCR6 expression. ConclusionThe results of the study indicate that control of intestinal Th17 cells by regulating novel miR-681/CCR6 signaling attenuates endotoxemia-induced intestinal injury.


2021 ◽  
pp. 110897
Author(s):  
Penélope Lacrísio dos Reis Menta ◽  
Maria Emília Rabelo Andrade ◽  
Lívia Furquim de Castro ◽  
Luísa Martins Trindade ◽  
Melissa Tainan Silva Dias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document