scholarly journals Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation

2014 ◽  
Vol 306 (11) ◽  
pp. G983-G991 ◽  
Author(s):  
Jagmohan Singh ◽  
Sumit Kumar ◽  
Chadalavada Vijay Krishna ◽  
Satish Rattan

Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4–6 mo old) and aging (24–30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2·−), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and smooth muscle cells with the O2·− scavenger SOD. Our data showed that AADI was associated with a decrease in RhoA/ROCK expression at the transcriptional and translational levels. Oxidative stress with a LY83583-mediated decrease in IAS tone and relaxation of IAS smooth muscle cells was associated with a decrease in RhoA/ROCK signal transduction, which was reversible by SOD. In addition, LY83583 caused a significant decrease in IAS contraction produced by the RhoA activator and a known RhoA/ROCK agonist, U46619 , that was also reversible by SOD. The inhibitory effects of LY83583 and the ROCK inhibitor Y27632 on the U46619-induced increase in IAS tone were similar. We conclude that an increase in oxidative stress plays an important role in AADI in the elderly and may be one of the underlying mechanisms of RI in certain aging patients.

2020 ◽  
Vol 11 (8) ◽  
pp. 6843-6854 ◽  
Author(s):  
Fang Wang ◽  
Zebin Weng ◽  
Yi Lyu ◽  
Yifan Bao ◽  
Juncheng Liu ◽  
...  

This study explores the antioxidative effect of a specific wheat germ-derived peptide on high glucose-induced oxidative stress in vascular smooth muscle cells (VSMCs) and the underlying mechanisms.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 516
Author(s):  
Justine Bonetti ◽  
Alessandro Corti ◽  
Lucie Lerouge ◽  
Alfonso Pompella ◽  
Caroline Gaucher

Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.


2003 ◽  
Vol 284 (1) ◽  
pp. G1-G7 ◽  
Author(s):  
Khalil N. Bitar

The object of this theme is to offer new perspectives on the effect of aging on signal-transduction pathways associated with agonist-induced contraction of smooth muscle cells from the colon. Smooth muscle cells from old rats (32 mo old) exhibit limited cell length distribution and diminished contractility. The observed reduced contractile response may be due to the effect of aging on signal-transduction pathways, especially an inhibition of the tyrosine kinase-Src kinase pathway, a reduced activation of the PKC pathway, and a reduced association of contractile proteins [heat shock protein 27 (HSP27)-tropomyosin, HSP27-actin, actin-myosin]. Levels of HSP27 phosphorylation are also reduced compared with adult rats.


Sign in / Sign up

Export Citation Format

Share Document