scholarly journals Role of prostaglandin D2 in mast cell activation-induced sensitization of esophageal vagal afferents

2013 ◽  
Vol 304 (10) ◽  
pp. G908-G916 ◽  
Author(s):  
Shizhong Zhang ◽  
Gintautas Grabauskas ◽  
Xiaoyin Wu ◽  
Moon Kyung Joo ◽  
Andrea Heldsinger ◽  
...  

Sensitization of esophageal afferents plays an important role in esophageal nociception, but the mechanism is less clear. Our previous studies demonstrated that mast cell (MC) activation releases the preformed mediators histamine and tryptase, which play important roles in sensitization of esophageal vagal nociceptive C fibers. PGD2 is a lipid mediator released by activated MCs. Whether PGD2 plays a role in this sensitization process has yet to be determined. Expression of the PGD2 DP1 and DP2 receptors in nodose ganglion neurons was determined by immunofluorescence staining, Western blotting, and RT-PCR. Extracellular recordings were performed in ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal distension were compared before and after perfusion of PGD2, DP1 and DP2 receptor agonists, and MC activation, with or without pretreatment with antagonists. The effect of PGD2 on 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal nodose neurons was determined by patch-clamp recording. Our results demonstrate that DP1 and DP2 receptor mRNA and protein were expressed mainly in small- and medium-diameter neurons in nodose ganglia. PGD2 significantly increased esophageal distension-evoked action potential discharges in esophageal nodose C fibers. The DP1 receptor agonist BW 245C mimicked this effect. PGD2 directly sensitized DiI-labeled esophageal nodose neurons by decreasing the action potential threshold. Pretreatment with the DP1 receptor antagonist BW A868C significantly inhibited PGD2 perfusion- or MC activation-induced increases in esophageal distension-evoked action potential discharges in esophageal nodose C fibers. In conclusion, PGD2 plays an important role in MC activation-induced sensitization of esophageal nodose C fibers. This adds a novel mechanism of visceral afferent sensitization.

2014 ◽  
Vol 306 (3) ◽  
pp. G200-G207 ◽  
Author(s):  
Shizhong Zhang ◽  
Zhenyu Liu ◽  
Andrea Heldsinger ◽  
Chung Owyang ◽  
Shaoyong Yu

Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2–3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5174-5174 ◽  
Author(s):  
Nicolas Zenker ◽  
Lawrence B Afrin

Abstract Distinct from mastocytosis and simple allergy and characterized by constitutive mast cell (MC) activation and aberrant MC reactivity with little to no excessive MC accumulation, MC activation syndrome (MCAS) presents as acute-on-chronic multisystem polymorbidity of generally inflammatory ± allergic theme; severity may be disabling. Given suspicion of epidemic prevalence of MCAS (Molderings GJ et al., PLoS One 2013;8(9):e76241), diagnostic testing efficiency is important. Diagnosis (Molderings GJ et al., J Hematol Oncol 2011;4:10) presently rests on identifying clinical presentation consistent with chronic/recurrent aberrant MC mediator release, identifying elevated MC mediator levels, and eliminating other relevant diagnostic considerations. MCs produce >200 mediators, but few can be tested in clinical laboratories; even fewer are relatively specific to the MC. Mediators often tested in MCAS work-ups include serum tryptase (sTryp) and chromogranin A (sCgA), plasma prostaglandin D2 (pPGD2) and histamine (pHist) and heparin (pHep), random (r) and 24-hour (24h) urinary PGD2 (uPGD2) and N-methylhistamine (uNMH) and leukotriene E4 (LTE4), and 24h urinary 11-β-PGF2α (u11βPGF2α). Testing the entire suite may be prohibitively expensive, but few data on frequency of elevation of MC mediators are available to guide cost-effective testing (pHep may be the most sensitive per Vysniauskaite M et al., PLoS ONE 2015;10(4):e0124912). Test accuracy for many MC mediators (especially heparin and the eicosanoids) is also challenged by thermolability and half-lives as short as ~1 minute. Loss of specimen chill during handling (e.g., unrefrigerated centrifugation (UCF)) or transport may yield false negatives. Methods: We reviewed the charts of 198 adult pts (97% Caucasian, 84% female) evaluated at our center and diagnosed with MC activation disease (MCAD: MCAS (184), CM (4), indolent SM (9), aggressive SM (1)) from July 2014 through July 2015. Results: Table 1 shows performance in MCAS pts of MC mediators in tests accessioned at our center (testing accessioned elsewhere censored to reduce bias from variability in specimen handling by pts and lab staff not known to have been educated regarding proper specimen handling). Our sTryp results agree closely with Vysniauskaite et al. but are lower than found in smaller cohorts in Zblewski D et al., Blood 2014;124(21):3204 (>33%) and Ravi A et al., J Allergy Clin Immunol Pract 2014;2(6):775. Table 1. MC mediator performance in diagnostic testing for MCAS. Mediator # Tests Performed # Tests Yielding Elevated Result % Elevated % Elevated Comparisons Vysniauskaite (n=238) Zblewski (n=15) Ravi (n=25) sTryp 147 13 8.8 10 >40 40 sCgA 133 42 31.5 12 pPGD2 113 15 13.2 pHist 133 39 29.3 pHep* 121 35 28.9 59 r-uPGD2 102 10 9.8 r-uNMH 108 8 7.4 r-uLTE4 68 3 4.4 24h-uPGD2 107 41 38.3 24h-uNMH 111 6 5.4 22 8 24h-uLTE4 72 6 8.3 24h-u11βPGF2α 68 25 36.8 *Results affected by use of UCF in some cases; see below. Upon our recognition of oddly persistently negative pHep levels, a review of procedures in late December 2014 discovered specimen centrifugation since July 2014 had not been refrigerated. Refrigerated centrifugation (RCF) was immediately instituted, but lab issues led to inadvertent return in February 2015 to UCF which was re-discovered and re-corrected in March 2015. The rate of finding elevations in pHep levels (upper normal 0.02 anti-Factor Xa units/ml per Seidel et al., Thromb Haemost 2011;106(5):987) appeared strongly correlated with use of RCF (p <0.00001; Figure 1). RCF improved the rate of finding elevated pHep from 1 of 50 patients tested (2.0%) to 34 of 70 patients tested (48.6%). Other mediators did not appear significantly affected by UCF. Conclusions: In our cohort (5:1 female:male vs. previously reported 2-3:1 ratios), pHep, 24uPGD2, and 24u11βPG2α appeared the most sensitive indicators of MC activation; sTryp and urinary NMH and LTE4 appeared least sensitive. Our data confirm others' findings that sTryp is seldom elevated in MCAS; thus, normal sTryp decreases likelihood of mastocytosis but not MCAS. A sensitive assay is needed when testing pHep for evidence of MC activation as most elevated pHep levels in the MCAS population are below more commonly used assays' lower limits of detection (typically 0.10-0.20 anti-Factor Xa units/ml, geared to detect therapeutic pHep levels). Continuous specimen chilling appears important in accurately measuring pHep. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 63 (4) ◽  
pp. 317-325 ◽  
Author(s):  
Marita Nittner-Marszalska ◽  
Ewa Cichocka-Jarosz ◽  
Marek Sanak ◽  
Magdalena Wujczyk ◽  
Anna Dor-Wojnarowska ◽  
...  

2009 ◽  
Vol 297 (1) ◽  
pp. G34-G42 ◽  
Author(s):  
Shaoyong Yu ◽  
Guofeng Gao ◽  
Blaise Z. Peterson ◽  
Ann Ouyang

Sensitization of esophageal sensory afferents by inflammatory mediators plays an important role in esophageal nociception. We have shown esophageal mast cell activation induces long-lasting mechanical hypersensitivity in vagal nodose C-fibers. However, the roles of mast cell mediators and downstream ion channels in this process are unclear. Mast cell tryptase via protease-activated receptor 2 (PAR2)-mediated pathways sensitizes sensory nerves and induces hyperalgesia. Transient receptor potential A1 (TRPA1) plays an important role in mechanosensory transduction and nociception. Here we tested the hypothesis that mast cell activation via a PAR2-dependent mechanism sensitizes TRPA1 to induce mechanical hypersensitivity in esophageal vagal C-fibers. The expression profiles of PAR2 and TRPA1 in vagal nodose ganglia were determined by immunostaining, Western blot, and RT-PCR. Extracellular recordings from esophageal nodose neurons were performed in ex vivo guinea pig esophageal-vagal preparations. Action potentials evoked by esophageal distention and chemical perfusion were compared. Both PAR2 and TRPA1 expressions were identified in vagal nodose neurons by immunostaining, Western blot, and RT-PCR. Ninety-one percent of TRPA1-positive neurons were of small and medium diameters, and 80% coexpressed PAR2. Esophageal mast cell activation significantly enhanced the response of nodose C-fibers to esophageal distension (mechanical hypersensitivity). This was mimicked by PAR2-activating peptide, which sustained for 90 min after wash, but not by PAR2 reverse peptide. TRPA1 inhibitor HC-030031 pretreatment significantly inhibited mechanical hypersensitivity induced by either mast cell activation or PAR2 agonist. Collectively, our data provide new evidence that sensitizing TRPA1 via a PAR2-dependent mechanism plays an important role in mast cell activation-induced mechanical hypersensitivity of vagal nodose C-fibers in guinea pig esophagus.


Sign in / Sign up

Export Citation Format

Share Document