Bicarbonate secretion by rabbit proximal colon

1986 ◽  
Vol 251 (4) ◽  
pp. G436-G445 ◽  
Author(s):  
S. K. Sullivan ◽  
P. L. Smith

Stripped segments of proximal colon (1-6 cm distal to the ampulla caecalis coli) were studied in vitro in Ussing chambers under short-circuit conditions using the pH-stat technique. With glucose and HCO3-CO2 present in the serosal bathing solution only, proximal colon alkalinizes the luminal bathing solution at a rate of 2.1 +/- 0.2 mu eq X h-1 X cm-2 (n = 36). With HCO3-CO2 present in the luminal bathing solution alone, proximal colon does not significantly acidify or alkalinize the serosal bathing solution. Addition of glucose (10 mM) to the luminal bathing solution abolished luminal alkalinization. Removal of HCO3 and CO2 from the serosal bathing solution or replacement of O2 with N2 also abolished luminal alkalinization. Acetazolamide (0.1 mM) added to both bathing solutions did not alter the rate of luminal alkalinization. Ion-replacement studies revealed that the alkalinization process was highly dependent on the presence of Na in the bathing solutions and much less dependent on the presence of Cl. Furthermore, ouabain (0.1 mM) significantly reduced luminal alkalinization. As in rabbit ileum, serosal epinephrine (0.1 mM) did not alter luminal alkalinization but increased serosal alkalinization by a Na-dependent mechanism. These results suggest that luminal alkalinization results from a Na-dependent, active transcellular HCO3 transport process and that a Na-dependent HCO3 absorptive process is activated by adrenergic stimuli.

1988 ◽  
Vol 255 (2) ◽  
pp. G175-G183 ◽  
Author(s):  
P. L. Smith ◽  
D. P. Montzka ◽  
G. P. McCafferty ◽  
M. A. Wasserman ◽  
J. D. Fondacaro

Effects of leukotrienes D4 and E4 (LTD4 and LTE4) on electrolyte transport were examined, employing stripped segments of rat and rabbit ileum mounted in Ussing chambers. Addition of LTD4 or LTE4 to the serosal but not the mucosal bathing solution elicited a transient increase in short-circuit current (Isc) with maximal responses seen at 10(-5) M and 10(-8) M in rat and rabbit respectively and a sustained decrease in transepithelial conductance (Gt) in the rat only. In the rat, Cl replacement, reduction of bathing solution [Ca2+] to 1 microM or pretreatment with 1 microM indomethacin or meclofenamic acid inhibited the LTD4- or LTE4-induced Isc changes with no effect on the decrease in Gt. LTD4 (10 microM) transiently increased net Cl secretion and produced a sustained decrease in both unidirectional and net Na transport and mucosal-to-serosal Cl flux in rat ileum. The decrease in unidirectional Na fluxes is accounted for predominantly by a change in the potential independent flux of Na. These results suggest that the increase in Isc in both rat and rabbit is mediated by arachidonic acid metabolites, whereas the decrease in Gt and net Na absorption in rat ileum is mediated by a cyclooxygenase-independent pathway.


1989 ◽  
Vol 257 (4) ◽  
pp. G607-G615 ◽  
Author(s):  
J. H. Sellin ◽  
R. Desoignie

Although it is well recognized that the ileum secretes bicarbonate, understanding of the mechanisms of the transport of this ion has been limited by the inability to measure fluxes in vitro. However, by clamping the bathing fluid at a set pH using a pH stat system, accurate measurements of bicarbonate movement can be made. Bicarbonate transport in rabbit ileum in vitro was measured by simultaneously employing both the pH stat and short-circuit techniques. The role of acid-base balance was assessed by systematically altering buffer bicarbonate concentration, pH, and partial pressure of CO2 (PCO2). Bicarbonate secretion was strongly correlated with both serosal [HCO3-] (r = 0.824, P less than 0.01) and serosal pH (r = 0.793, P less than 0.01). Bicarbonate absorption was not significantly altered by mucosal [HCO3-], pH, or PCO2. Paracellular movement of bicarbonate, as assessed by voltage clamping and diffusion potential experiments, did not appear to be a major component of transcellular transport. Epinephrine stimulated bicarbonate absorption significantly, both in Cl-containing and Cl-free Ringer solution but did not alter bicarbonate secretion. Epinephrine-induced decreases in short-circuit current were correlated with enhanced bicarbonate absorption. Bicarbonate secretion was inhibited by serosal chloride and serosal bumetanide; mucosal chloride stimulated bicarbonate secretion. Mucosal chloride did not affect bicarbonate absorption. Glucocorticoids enhanced both bicarbonate absorption and secretion. These results suggest that there are discrete apical and basolateral transport mechanisms that regulate bicarbonate transport. Bicarbonate secretion may be mediated by a basolateral bumetanide-sensitive, chloride-inhibitable transporter and by an apical chloride-bicarbonate exchange process.


1986 ◽  
Vol 250 (4) ◽  
pp. G475-G483 ◽  
Author(s):  
S. K. Sullivan ◽  
P. L. Smith

Fluxes of K from mucosa to serosa or serosa to mucosa have been examined in stripped preparations of rabbit proximal and distal colon in vitro under short-circuit conditions in Ussing chambers. Results from these studies demonstrate that steady-state radioisotopic fluxes of K are achieved after 90 min and remain constant for at least 2 h. Determination of the K concentration dependence of the serosal-to-mucosal K flux revealed that this flux contains both saturable and nonsaturable components. Addition of ouabain (0.1 mM) abolished the saturable component of the serosal-to-mucosal K flux. The mucosal-to-serosal K flux is a linear function of K concentration between 1 and 20 mM under basal conditions. In paired tissues, serosal-to-mucosal K flux is always greater than mucosal-to-serosal flux under basal conditions resulting in net K secretion. However, addition of barium (2 mM) to the mucosal or serosal bathing solution had no significant effect on either unidirectional or net K fluxes. In addition, mucosal bumetanide (0.1 mM) or removal of Cl from both bathing solutions had no significant effect on unidirectional or net K fluxes. In rabbit distal colon, Cl removal from the bathing solutions significantly reduced serosal-to-mucosal K flux, resulting in net K absorption. These results indicate that rabbit proximal colon like rabbit distal colon actively secretes K. However, unlike distal colon the proximal colon does not possess an active K uptake mechanism at the apical cell membrane.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 249 (3) ◽  
pp. G358-G368 ◽  
Author(s):  
P. L. Smith ◽  
M. A. Cascairo ◽  
S. K. Sullivan

Stripped rabbit ileal mucosa was studied in vitro in Ussing chambers under short-circuit conditions using the pH-stat technique to determine basal rates of luminal alkalinization; the contribution of the shunt pathway to the alkalinization process; the effects of Na, Cl, or HCO3 removal from the bathing solutions on luminal alkalinization; and the effects of epinephrine, ouabain, 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), acetazolamide, prostaglandin E1 (PGE1), A23187, sugars, or amino acids on the alkalinization process. Results from these studies reveal that, under basal conditions, the rate of luminal alkalinization accounts for 81% of the basal short-circuit current (Isc), although there was no correlation between the rate of alkalinization and Isc. The contribution of the shunt to the alkalinization process accounts for less than 10% of the mucosal-to-serosal HCO3 flux. Removal of Cl from the bathing solutions increased the rate of luminal alkalinization and decreased Isc. Sodium removal from the bathing solutions reduced both Isc and the rate of luminal alkalinization. Addition of DIDS to the luminal or serosal bathing solution reduced luminal alkalinization less than 30%. Acetazolamide, PGE1, and A23187 were all without effect on luminal alkalinization. Addition of 3-O-methyl-D-glucose or L-alanine to the luminal bathing solution did not alter luminal alkalinization but increased Isc, D-Glucose added to the luminal bathing solution reduced luminal alkalinization. This effect appears to result from metabolic acid production since 1) it is not seen with L-alanine or 3-O-methyl-D-glucose; 2) in the absence of HCO3 in the bathing solutions, D-glucose increased luminal acidification; and 3) luminal addition of fructose also reduced the rate of luminal alkalinization. Addition of epinephrine to the serosal bathing solution stimulates a Na-dependent serosal alkalinization process. These results suggest that luminal alkalinization results from Na-dependent, transcellular HCO3 transport and that a Na-dependent, HCO3 absorptive process is stimulated by adrenergic agents.


2004 ◽  
Vol 286 (5) ◽  
pp. G814-G821 ◽  
Author(s):  
Bi-Guang Tuo ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett ◽  
Jon I. Isenberg

PKC has been shown to regulate epithelial Cl- secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current ( Isc). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or Isc ( P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and Isc in a concentration-dependent manner (from 10-8 to 10-5M) ( P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCα, -γ, -ϵ, -θ, -μ, and -ι/λ were expressed in murine duodenal mucosa. Ro 31–8220 (an inhibitor active against PKCϵ, -α, -β, and -γ), but not Gö 6983 (an inhibitor active against PKCα, -γ, -β, and -δ), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCϵ, an effect that was prevented by Ro 31–8220 but not Gö 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCϵ isoform.


2009 ◽  
Vol 297 (2) ◽  
pp. G278-G291 ◽  
Author(s):  
Jin Zhang ◽  
Susan T. Halm ◽  
Dan R. Halm

Adrenergic activation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon was desensitized by peptide-YY (PYY). Addition of PYY or neuropeptide-Y (NPY) to the bathing solution of mucosae in Ussing chambers suppressed the short-circuit current ( Isc) corresponding to electrogenic Cl− secretion, whether stimulated by epinephrine (epi), prostaglandin-E2 (PGE2), or carbachol (CCh). Neither peptide markedly inhibited the large transient component of synergistic secretion (PGE2 + CCh). Sustained Cl− secretory Isc was inhibited ∼65% by PYY or NPY, with IC50s of 4.1 ± 0.9 nM and 9.4 ± 3.8 nM, respectively. This inhibition was eliminated by BIIE0246, an antagonist of the Y2-neuropeptide receptor (Y2-NpR), but not by Y1-NpR antagonist BVD10. Adrenergic sensitivity for activation of K+ secretion in the presence of Y2-NpR blockade by BIIE0246 was (EC50s) 2.9 ± 1.2 nM for epi and 13.3 ± 1.0 nM for norepinephrine, approximately fourfold greater than in the presence of PYY. Expression of mRNA for both Y1-NpR and Y2-NpR was indicated by RT-PCR of RNA from colonic mucosa, and protein expression was indicated by immunoblot. Immunoreactivity (ir) for Y1-NpR and Y2-NpR was distinct in basolateral membranes of columnar epithelial cells in the crypts of Lieberkühn as well as intercrypt surface epithelium. Adrenergic nerves in proximity with crypts were detected by ir for dopamine-β-hydroxylase, and a portion of these nerves also contained NPYir. BIIE0246 addition increased secretagog-activated Isc, consistent with in vitro release of either PYY or NPY. Thus PYY and NPY were able to suppress Cl− secretory capacity and desensitize the adrenergic K+ secretory response, providing a direct inhibitory counterbalance against secretory activation.


1990 ◽  
Vol 259 (1) ◽  
pp. G62-G69 ◽  
Author(s):  
L. L. Clarke ◽  
R. A. Argenzio

In contrast to in vivo findings, the equine proximal colon fails to demonstrate significant net absorption of Na+ and Cl- under in vitro conditions. The present study was undertaken to determine if endogenous prostanoids are responsible for this apparent lack of ion transport. Proximal colonic tissues from ponies were preincubated in either normal Ringer solution or in Ringer containing 1 microM indomethacin and studied in Ussing chambers containing these solutions. Untreated colonic mucosa demonstrated negligible Na(+)-Cl- absorption in the basal state. In contrast, indomethacin-treated colon significantly absorbed Na+ and Cl-, primarily as the result of an equivalent increase in the mucosal-to-serosal flux of these ions. Preincubation of proximal colon in 0.1 mM ibuprofen-treated Ringer yielded similar results. Treatment of indomethacin colon with 1 mM mucosal amiloride eliminated net Na(+)-Cl- absorption without affecting the short-circuit current (Isc). The Isc in control tissue was significantly greater than in indomethacin-treated tissue and was reduced by 0.1 mM serosal furosemide. Serosal addition of 0.1 microM prostaglandin E2 or 10 mM serosal plus mucosal theophylline to indomethacin-treated tissues abolished net Na(+)-Cl- absorption and increased the Isc to levels indistinguishable from control. In contrast, control tissues were essentially unaffected by these secretagogues. These findings indicated that Na(+)-Cl- absorption in equine proximal colon was electroneutral (possibly involving Na(+)-H+ exchange) and that the tissue was capable of electrogenic Cl- secretion. However, under the in vitro conditions, basal ion transport was dominated by endogenous prostanoids that abolished Na(+)-Cl- absorption and elicited near-maximal electrogenic Cl- secretion.


1985 ◽  
Vol 248 (1) ◽  
pp. G103-G109 ◽  
Author(s):  
R. D. McCabe ◽  
P. L. Smith

Stripped rabbit colonic mucosa was studied in vitro in Ussing chambers to further investigate the role of Ca in regulating K and Cl secretion stimulated by the divalent cation ionophore A23187, prostaglandin E1 (PGE1), or 8-bromo-cAMP (8BrcAMP). To assess the effects of these secretagogues on the paracellular shunt permeability, we measured the Na concentration dependence of the serosal-to-mucosal Na flux in the absence or presence of these stimuli. Results from these studies reveal that changes in net K and Cl secretion produced by secretory stimuli cannot be accounted for by a change in shunt permeability. The possible involvement of Ca in the secretory response of the colon to these stimuli was investigated by measuring the changes in Cl and K transport elicited by A23187, PGE1, or 8BrcAMP in the absence or presence of trifluoperazine (10(-4) M) added to the serosal bathing solution. Trifluoperazine alone did not significantly alter basal Na or Cl fluxes or short-circuit current (Isc) but did decrease transepithelial conductance (Gt) and the serosal-to-mucosal K flux. Pretreatment of the tissues with trifluoperazine significantly reduced or abolished the changes in K fluxes elicited by A23187, 8BrcAMP, or PGE1 without altering the changes in Cl transport, Isc, and Gt. These results suggest that K secretion induced by these secretagogues involves an increase in intracellular Ca concentration and may be mediated by calmodulin.


2000 ◽  
Vol 279 (3) ◽  
pp. C567-C577 ◽  
Author(s):  
Michele Trucksis ◽  
Timothy L. Conn ◽  
Steven S. Wasserman ◽  
Cynthia L. Sears

ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current ( Isc) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in Iscand potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl−secretory cell. ACE added to the apical surface alone stimulated a rapid increase in Iscand PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl−and HCO3−. ACE acted synergistically with the Ca2+-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca2+but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca2+as a second messenger and that this toxin stimulates a novel Ca2+-dependent synergy.


1986 ◽  
Vol 250 (1) ◽  
pp. G44-G49 ◽  
Author(s):  
P. L. Smith ◽  
S. K. Sullivan ◽  
R. D. McCabe

Stripped rabbit colonic mucosa was studied in vitro in Ussing chambers to determine effects of the disulfonic stilbenes 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and the diuretic furosemide on unidirectional and net Cl fluxes. Results from these studies reveal that SITS (1 mM) added to either the serosal or mucosal bathing solution reduced both unidirectional Cl fluxes with no significant change in net Cl flux. The effects of SITS do not appear to be mediated by an effect on the shunt permeability since SITS (1 mM) did not alter either the intercept or slope of the Na concentration dependence of the serosal-to-mucosal Na flux. Furosemide (1 mM) decreased the serosal-to-mucosal Cl flux without altering short-circuit current (Isc) when added to the luminal bathing solution and reduced both unidirectional fluxes and increased Isc when added to the serosal bathing solution. DIDS (0.5 mM) added to the luminal bathing solution did not alter unidirectional Cl fluxes or Isc. However, serosal addition of DIDS produced dose-dependent changes in Cl transport. At 5 microM DIDS reduced the mucosal-to-serosal Cl flux without altering the serosal-to-mucosal flux or Isc. At 50 microM DIDS reduced the mucosal-to-serosal Cl flux and increased Isc, and at 0.5 mM DIDS increased the serosal-to-mucosal Cl flux, reduced the mucosal-to-serosal Cl flux, and increased Isc and transepithelial conductance. The effect of 0.5 mM DIDS on Isc was reduced by Ca removal from the serosal bathing solution and by the loop diuretics furosemide and bumetanide.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document