Distinct activation of Na+-H+ exchange by gastrin and CCK peptide in acini from guinea pig

1988 ◽  
Vol 254 (1) ◽  
pp. G25-G32
Author(s):  
M. J. Bastie ◽  
M. Delvaux ◽  
M. Dufresne ◽  
J. S. Saunier-Blache ◽  
N. Vaysse ◽  
...  

The effect of cholecystokinin (CCK)-gastrin family peptides (caerulein, unsulfated gastrin-17, and pentagastrin) and secretin in activating amiloride-sensitive 22Na uptake were investigated in guinea pig pancreatic acini. Secretin had no effect, but CCK-gastrin peptides stimulated the amiloride-sensitive 22Na uptake. The effect of caerulein was inhibited by dibutyryl guanosine 3',5'-cyclic monophosphate (cGMP) and asperlicin, indicating that activation of the Na+-H+ antiport caused by caerulein is mediated by CCK receptors. The effect of gastrin was dibutyryl cGMP and asperlicin insensitive, whereas the effect of pentagastrin was inhibited by the CCK antagonists but with a low affinity, indicating that the effect of gastrin and that of pentagastrin was CCK receptor independent. The calcium ionophore A23187 caused an increase in amiloride-sensitive 22Na uptake. However, the effect of caerulein, which increased internal calcium concentration, was not modified after depletion of intracellular calcium, and that of CCK-gastrin family peptides was not dependent on external calcium concentration. Activation of amiloride-sensitive 22Na uptake was also induced by 12-O-tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetyl-glycerol. Activation of protein kinase c may be involved in the mechanism of caerulein or gastrin in activating the Na+-H+ exchange.

Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 29-33
Author(s):  
KM Skubitz ◽  
NW Wickham ◽  
DE Hammerschmidt

The effects of adenosine, adenosine deaminase (ADA), and an irreversible ADA inhibitor 2′-deoxycoformycin (DCF) on granulocyte aggregation in response to four different stimuli: the synthetic chemotaxin N-formyl-met-leu-phe (FMLP), zymosan-activated plasma (ZAP), the calcium ionophore A23187, and phorbol myristate acetate (PMA) were studied. Adenosine inhibited granulocyte aggregation in response to 10(- 7) mol/L FMLP in a dose-dependent fashion; inhibition in the presence of 1 mumol/L adenosine was 25% +/- 3% (SD) and was 50% (the maximal inhibition observed) with 1 mmol/L adenosine. Quantitatively similar results were obtained when ZAP or A23187 was used as the aggregant but the response to PMA was not affected. ADA not only reversed the inhibition due to adenosine but actually augmented the aggregation to FMLP by 118% +/- 9%. Similar results were obtained with ZAP and A23187 but not with PMA. These effects of ADA depended on its enzymatic activity as they could be blocked by preincubation with DCF. Fluorescent measurement of intracellular calcium in fura-2 loaded granulocyte suspensions established that neither adenosine nor ADA affected subsequent FMLP-stimulated calcium responses. Adenosine, therefore, may inhibit granulocyte responsiveness by blocking signal transduction at a point after calcium entry/mobilization but before activation of protein kinase C. Furthermore, the augmentation of responses seen with ADA suggests that endogenous adenosine may be a physiologic autocrine regulator of granulocyte function.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 29-33 ◽  
Author(s):  
KM Skubitz ◽  
NW Wickham ◽  
DE Hammerschmidt

Abstract The effects of adenosine, adenosine deaminase (ADA), and an irreversible ADA inhibitor 2′-deoxycoformycin (DCF) on granulocyte aggregation in response to four different stimuli: the synthetic chemotaxin N-formyl-met-leu-phe (FMLP), zymosan-activated plasma (ZAP), the calcium ionophore A23187, and phorbol myristate acetate (PMA) were studied. Adenosine inhibited granulocyte aggregation in response to 10(- 7) mol/L FMLP in a dose-dependent fashion; inhibition in the presence of 1 mumol/L adenosine was 25% +/- 3% (SD) and was 50% (the maximal inhibition observed) with 1 mmol/L adenosine. Quantitatively similar results were obtained when ZAP or A23187 was used as the aggregant but the response to PMA was not affected. ADA not only reversed the inhibition due to adenosine but actually augmented the aggregation to FMLP by 118% +/- 9%. Similar results were obtained with ZAP and A23187 but not with PMA. These effects of ADA depended on its enzymatic activity as they could be blocked by preincubation with DCF. Fluorescent measurement of intracellular calcium in fura-2 loaded granulocyte suspensions established that neither adenosine nor ADA affected subsequent FMLP-stimulated calcium responses. Adenosine, therefore, may inhibit granulocyte responsiveness by blocking signal transduction at a point after calcium entry/mobilization but before activation of protein kinase C. Furthermore, the augmentation of responses seen with ADA suggests that endogenous adenosine may be a physiologic autocrine regulator of granulocyte function.


1997 ◽  
Vol 327 (2) ◽  
pp. 461-472 ◽  
Author(s):  
J. Luis GARCÍA ◽  
A. Juan ROSADO ◽  
Antonio GONZÁLEZ ◽  
T. Robert JENSEN

Recent studies show that the effects of some oncogenes, integrins, growth factors and neuropeptides are mediated by tyrosine phosphorylation of the cytosolic kinase p125 focal adhesion kinase (p125FAK) and the cytoskeletal protein paxillin. Recently we demonstrated that cholecystokinin (CCK) C-terminal octapeptide (CCK-8) causes tyrosine phosphorylation of p125FAK and paxillin in rat pancreatic acini. The present study was aimed at examining whether protein kinase C (PKC) activation, calcium mobilization, cytoskeletal organization and small G-protein p21rho activation play a role in mediating the stimulation of tyrosine phosphorylation by CCK-8 in acini. CCK-8-stimulated phosphorylation of p125FAK and paxillin reached a maximum within 2.5 min. The CCK-8 dose response for causing changes in the cytosolic calcium concentration ([Ca2+]i) was similar to that for p125FAK and paxillin phosphorylation, and both were to the left of that for receptor occupation and inositol phosphate production. PMA increased tyrosine phosphorylation of both proteins. The calcium ionophore A23187 caused only 25% of the maximal stimulation caused by CCK-8. GF109203X, a PKC inhibitor, completely inhibited phosphorylation with PMA but had no effect on the response to CCK-8. Depletion of [Ca2+]i by thapsigargin had no effect on CCK-8-stimulated phosphorylation. Pretreatment with both GF109203X and thapsigargin decreased CCK-8-stimulated phosphorylation of both proteins by 50%. Cytochalasin D, but not colchicine, completely inhibited CCK-8- and PMA-induced p125FAK and paxillin phosphorylation. Treatment with Clostridium botulinum C3 transferase, which inactivates p21rho, caused significant inhibition of CCK-8-stimulated p125FAK and paxillin phosphorylation. These results demonstrate that, in pancreatic acini, CCK-8 causes rapid p125FAK and paxillin phosphorylation that is mediated by both phospholipase C-dependent and -independent mechanisms. For this tyrosine phosphorylation to occur, the integrity of the actin, but not the microtubule, cytoskeleton is essential as well as the activation of p21rho.


Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2405-2413 ◽  
Author(s):  
JM Gerrard ◽  
LL Beattie ◽  
J Park ◽  
SJ Israels ◽  
A McNicol ◽  
...  

Abstract The addition of 1-oleoyl-2-acetylglycerol (OAG), or phorbol-12- myristate-13-acetate (PMA) to platelets induced the phosphorylation of a 47,000 dalton protein (47 Kd), fusion of granule membranes with membranes of the surface connected canalicular system, the formation of large vesicles and the secretion of serotonin. 1-(5- isoquinolinesulfonyl)-2-methyl-piperazine (H7), and sphingosine, inhibitors of protein kinase C, significantly inhibited the ultrastructural changes and the phosphorylation of 47 Kd. N-(2- guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), structurally similar to H7, but a weaker inhibitor of protein kinase C, did not attenuate these responses to OAG or to PMA. H7, but not HA1004, also markedly inhibited secretion induced by the synergistic combination of OAG and the calcium ionophore A23187. Amiloride and 5-(N,N dimethyl)- amiloride, inhibitors of the Na+/H+ transporter, did not inhibit the ultrastructural response and the protein phosphorylation induced by OAG, or the secretion induced by the combination of A23187 and OAG. The results link the activation of protein kinase C by diglycerides to the labilization and fusion of granule membranes important for secretion.


2007 ◽  
Vol 195 (1) ◽  
pp. 29-38
Author(s):  
Toshio Shimada ◽  
Taeko Hirose ◽  
Itsuro Matsumoto ◽  
Tadaomi Aikawa

We examined the cross-regulation of signaling between ACTH-and platelet-activating factor (PAF)-mediated steroidogenesis in the perfused guinea pig adrenal gland. Our method of in situ perfusion using an artificial medium can evaluate whether cortisol secretion in response to ACTH and PAF is interactive. Treating adrenal glands with 100 pg/ml ACTH diminished the subsequent cortisol response to 10 nM PAF. By contrast, PAF resulted in subsequent potentiation of ACTH-induced cortisol secretion. A mixture of 50 μM l-α-1-oleoyl-2-acetyl-sn-glycerol (OAG), an activator of protein kinase C (PKC), and 3.3 μM calcium ionophore (A23187), or 10 μM forskolin (FRK) diminished the cortisol response to PAF, whereas that to ACTH was unaffected. Each of PAF, ACTH, or FRK eliminated the cortisol response to OAG plus A23187, whereas that to FRK was unaffected. These data show that the protein kinase A (PKA)-dependent processes activated by ACTH or FRK can interfere with PAF-induced signal transduction at receptor and post-receptor levels. In contrast, PKC-dependent processes activated by PAF promoted ACTH-signaling at receptor and post-receptor level. Cross-regulation between processes activated by PAF receptor–PKC and by ACTH receptor–PKA might function in the multifactorial regulation of adrenocortical steroidogenesis.


1993 ◽  
Vol 137 (2) ◽  
pp. 335-340 ◽  
Author(s):  
T. Kubota ◽  
S. Kamada ◽  
M. Taguchi ◽  
S. Sakamoto ◽  
T. Aso

ABSTRACT The present study was undertaken to investigate the effects of protein kinase C (PKC) activation and calcium mobilization on the release of prolactin from human decidual cells in early pregnancy. Decidua obtained from patients in early pregnancy was enzymatically dispersed and cultured with phorbol myristate acetate (PMA) and calcium ionophore A23187 in a cell culture system. Prolactin in the medium was measured by enzyme-immunoassay. PMA, a PKC activator, dose-dependently attenuated the release of prolactin from cultured decidual cells, while a PKC inhibitor, H7, significantly (P < 0·001) diminished the effect of PMA on prolactin release. PMA had no effect on cell numbers or DNA synthesis in the decidual cells during culture. It did not significantly increase the generation of inositol phosphate in decidual cells prelabelled with myo[3H]inositol and it had no effect on intracellular calcium concentration ([Ca2 + ]i). Calcium ionophore A23187, a Ca2 +-mobilizing agent, also significantly (P<0·001) attenuated the release of prolactin and potentiated the PMA-induced suppression of prolactin release from decidual cells. These findings suggest that activation of PKC and mobilization of Ca2+ may be involved in regulating prolactin release from human decidual cells. The PMA-induced suppression of prolactin release is not triggered by phosphoinositide hydrolysis nor by the increase in [Ca2 + ]i in decidual cells. Journal of Endocrinology (1993) 137, 335–340


Hepatology ◽  
1986 ◽  
Vol 6 (4) ◽  
pp. 569-573 ◽  
Author(s):  
Peter F. Malet ◽  
Catherine L. Locke ◽  
Bruce W. Trotman ◽  
Roger D. Soloway

Sign in / Sign up

Export Citation Format

Share Document