Neuroimmune signaling in regulation of intestinal ion transport

1994 ◽  
Vol 266 (2) ◽  
pp. G167-G178 ◽  
Author(s):  
H. J. Cooke

Complex interactions between the enteric nervous system, the immune system, and the epithelium govern the transport rates of salt and water across the intestinal lining. Luminal antigens or bacterial products are detected by the immune system, which triggers a cascade of events associated with the release of inflammatory mediators. These mediators, by lowering the response threshold for transmission in some neural circuits, augment ongoing neural reflexes that promote secretion. Associated with these effects is a dampening of responses in other neural circuits innervating the mucosal effectors. Selective excitation and inhibition of the neural reflex circuitry coupled with direct actions of inflammatory mediators on epithelial cells result in stereotypical motility and secretory patterns that are characterized by strong muscular contractions, copious secretion, and diarrhea.

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-14
Author(s):  
Fatima B. Saldana-Morales ◽  
Dasom V. Kim ◽  
Ming-Ting Tsai ◽  
Gretchen E. Diehl

1989 ◽  
Vol 83 (6) ◽  
pp. 1810-1820 ◽  
Author(s):  
M J Bern ◽  
C W Sturbaum ◽  
S S Karayalcin ◽  
H M Berschneider ◽  
J T Wachsman ◽  
...  

2013 ◽  
Vol 304 (11) ◽  
pp. G949-G957 ◽  
Author(s):  
Bindu Chandrasekharan ◽  
Behtash Ghazi Nezami ◽  
Shanthi Srinivasan

The enteric nervous system (ENS), referred to as the “second brain,” comprises a vast number of neurons that form an elegant network throughout the gastrointestinal tract. Neuropeptides produced by the ENS play a crucial role in the regulation of inflammatory processes via cross talk with the enteric immune system. In addition, neuropeptides have paracrine effects on epithelial secretion, thus regulating epithelial barrier functions and thereby susceptibility to inflammation. Ultimately the inflammatory response damages the enteric neurons themselves, resulting in deregulations in circuitry and gut motility. In this review, we have emphasized the concept of neurogenic inflammation and the interaction between the enteric immune system and enteric nervous system, focusing on neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP). The alterations in the expression of NPY and VIP in inflammation and their significant roles in immunomodulation are discussed. We highlight the mechanism of action of these neuropeptides on immune cells, focusing on the key receptors as well as the intracellular signaling pathways that are activated to regulate the release of cytokines. In addition, we also examine the direct and indirect mechanisms of neuropeptide regulation of epithelial tight junctions and permeability, which are a crucial determinant of susceptibility to inflammation. Finally, we also discuss the potential of emerging neuropeptide-based therapies that utilize peptide agonists, antagonists, siRNA, oligonucleotides, and lentiviral vectors.


Sign in / Sign up

Export Citation Format

Share Document