Gap junctional communication coordinates vasopressin-induced glycogenolysis in rat hepatocytes

1998 ◽  
Vol 274 (6) ◽  
pp. G1109-G1116 ◽  
Author(s):  
Eliseo A. Eugenín ◽  
Hernan González ◽  
Claudia G. Sáez ◽  
Juan C. Sáez

Because hepatocytes communicate via gap junctions, it has been proposed that Ca2+waves propagate through this pathway and in the process activate Ca2+-dependent cellular responses. We tested this hypothesis by measuring vasopressin-induced glycogenolysis in short-term cultures of rat hepatocytes. A 15-min vasopressin (10−8 M) stimulation induced a reduction of glycogen content that reached a maximum 1–3 h later. Gap junction blockers, octanol or 18α-glycyrrhetinic acid, reduced the effect by 70%. The glycogenolytic response induced by Ca2+ ionophore 8-bromo-A-21387, which acts on each hepatocyte, was not affected by gap junction blockers. Moreover, the vasopressin-induced glycogenolysis was lower (70%) in dispersed than in reaggregated hepatocytes and in dispersed hepatocytes was not affected by gap junction blockers. In hepatocytes reaggregated in the presence of a synthetic peptide homologous to a domain of the extracellular loop 1 of the main hepatocyte gap junctional protein, vasopressin-induced glycogenolysis and incidence of dye coupling were drastically reduced. Moreover, gap junctional communication was detected between reaggregated cells, suggesting that hepatocytes with different vasopressin receptor densities become coupled to each other. The vasopressin-induced effect was not affected by suramin, ruling out ATP as a paracrine mediator. We propose that gap junctions allow for a coordinated vasopressin-induced glycogenolytic response despite the heterogeneity among hepatocytes.

1990 ◽  
Vol 10 (4) ◽  
pp. 1754-1763
Author(s):  
D S Crow ◽  
E C Beyer ◽  
D L Paul ◽  
S S Kobe ◽  
A F Lau

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


1990 ◽  
Vol 111 (5) ◽  
pp. 2077-2088 ◽  
Author(s):  
L S Musil ◽  
B A Cunningham ◽  
G M Edelman ◽  
D A Goodenough

Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.


2005 ◽  
Vol 16 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Joseph P. Stains ◽  
Roberto Civitelli

Osteoblasts are highly coupled by gap junctions formed by connexin43. Overexpression of connexin45 in osteoblasts results in decreased chemical and electrical coupling and reduces gene transcription from connexin response elements (CxREs) in the osteocalcin and collagen Iα1 promoters. Here, we demonstrate that transcription from the gap junction-dependent osteocalcin CxRE is regulated by extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) cascades. Overexpression of a constitutively active mitogen-activated protein kinase kinase (MEK), Raf, or Ras can increase transcription more than twofold of the CxRE, whereas inhibition of MEK or PI3K can decrease transcription threefold from the osteocalcin CxRE. Importantly, disruption of gap junctional communication by overexpression of connexin45 or treatment with pharmacological inhibitors of gap junctions results in reduced Raf, ERK, and Akt activation. The consequence of attenuated gap junction-dependent signal cascade activation is a decrease in Sp1 phosphorylation by ERK, resulting in decreased Sp1 recruitment to the CxRE and inhibited gene transcription. These data establish that ERK/PI3K signaling is required for the optimal elaboration of transcription from the osteocalcin CxRE, and that disruption of gap junctional communication attenuates the ability of cells to respond to an extracellular cue, presumably by limiting the propagation of second messengers among adjacent cells by connexin43-gap junctions.


2003 ◽  
Vol 89 (1) ◽  
pp. 135-149 ◽  
Author(s):  
Irene C. Solomon ◽  
Ki H. Chon ◽  
Melissa N. Rodriguez

Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1–5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 μM), 18α-glycyrrhetinic acid (25–100 μM), 18β-glycyrrhetinic acid (25–100 μM), octanol (200–300 μM), or heptanol (200 μM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (∼95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge ( P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T I ( P < 0.01) and T E ( P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a “bell-shaped” or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (≥130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to identify the specific brain stem regions and cell types (i.e., neurons, glia) mediating the observed modulations in phrenic motor output, these findings suggest that gap junction communication modulates generation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents in vitro.


1990 ◽  
Vol 10 (4) ◽  
pp. 1754-1763 ◽  
Author(s):  
D S Crow ◽  
E C Beyer ◽  
D L Paul ◽  
S S Kobe ◽  
A F Lau

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


1995 ◽  
Vol 108 (4) ◽  
pp. 1455-1467 ◽  
Author(s):  
D.L. Becker ◽  
W.H. Evans ◽  
C.R. Green ◽  
A. Warner

Gap junctions allow direct communication between cells without recourse to the extracellular space and have been widely implicated as important mediators of cell-cell signalling. They are constructed from the connexin proteins, which form a large family, and individual connexins show complex spatial and temporal variations in their expression patterns. Understanding how this variation contributes to the control of intercellular signalling, both in the adult and during embryonic development, is an important problem that would be aided by reagents that interfere with gap junctional communication through specific connexins. We have begun to address this issue by raising antibodies to peptides derived from connexin43 and connexin32. Connexin43 peptides were located in the amino terminus, cytoplasmic loop and carboxytail. Connexin32 peptides came from the cytoplasmic loop and the first extracellular loop. Immunoblotting and immunostaining properties of purified IgGs were characterized on mouse heart, liver and the 8- to 16-cell mouse embryo. Effects on transfer through gap junctions were assessed in the fully compacted 8-cell mouse embryo by co-injection with Lucifer Yellow or Cascade Blue. Embryos were maintained in culture to assess the developmental consequences of injection. Peptide competition was used to confirm the specificity of immunostaining and inhibition of dye transfer. All connexin specific antibodies recognized their parent connexin on immunoblots and showed no 43/32 cross-reactivity. The connexin32 extracellular loop antibody recognized both connexin 32 and 43 on immunoblots, as predicted by the amino acid sequence homology in this region, but did not immunostain intact gap junctions. Connexin specific antibodies that immuno-stained showed the predicted connexin specificity. Antibodies to either connexin43 amino acids (AA) 1–16 (amino terminus) or AA 101–112 (cytoplasmic loop) neither immunostained nor prevented functional communication through 8-cell embryo gap junctions. Antibodies to AA 123–136 and AA 131–142 in the cytoplasmic loop immunostained heart and 8-cell embryo gap junctions and blocked transfer through them with high efficiency. Fab' fragments were equally effective. Peptide competition showed that both antibodies contained epitopes within AA 131–136 of connexin43. Antibodies against AA 313–324 in the carboxytail immunostained heart and the 8-cell embryo and, as IgGs, prevented dye transfer. Fab' fragments were ineffective. All connexin43 antibodies that blocked gap junctional communication between cells of the 8-cell mouse embryo induced non-communicating cells subsequently to withdraw from compaction.(ABSTRACT TRUNCATED AT 400 WORDS)


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 113-118
Author(s):  
David L. Becker ◽  
Catherine Leclerc-David ◽  
Anne Warner

In the mouse embryo, gap junctions first appear at the 8-cell stage as compaction is about to take place. Compaction of the embryo is important for the differentiation of the first two cell types; the inner cell mass and the trophectoderm. Our studies examine the contribution of gap junctional communication at this stage of development We have characterised the normal sequence of appearance of gap junction protein and its distribution. The extent of communication as shown by the passage of dye between cells has been recorded in both normal embryos and embryos treated with drugs that influence gap junctional communication. Comparisons have been made with embryos that express a lethal gap junction defect and attempts were made to rescue such embryos by increasing their gap junction communication.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4703-4714 ◽  
Author(s):  
M. Levin ◽  
M. Mercola

Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be viewed as distinct and autonomous fields. Here we describe a series of experiments that indicate that the initiation of these programs requires communication between the two sides of the blastoderm. When deprived of either the left or the right lateral halves of the blastoderm, embryos are incapable of patterning normal left-right gene expression at Hensen's node. Not only are both flanks required, suggesting that there is no single signaling source for LR pattern, but the blastoderm must be intact. These results are consistent with our previously proposed model in which the orientation of LR asymmetry in the frog, Xenopus laevis, depends on large-scale partitioning of LR determinants through intercellular gap junction channels (M. Levin and M. Mercola (1998) Developmental Biology 203, 90–105). Here we evaluate whether gap junctional communication is required for the LR asymmetry in the chick, where it is possible to order early events relative to the well-characterized left and right hierarchies of gene expression. Treatment of cultured chick embryos with lindane, which diminishes gap junctional communication, frequently unbiased normal LR asymmetry of Shh and Nodal gene expression, causing the normally left-sided program to be recapitulated symmetrically on the right side of the embryo. A survey of early expression of connexin mRNAs revealed that Cx43 is present throughout the blastoderm at Hamburger-Hamilton stage 2–3, prior to known asymmetric gene expression. Application of antisense oligodeoxynucleotides or blocking antibody to cultured embryos also resulted in bilateral expression of Shh and Nodal transcripts. Importantly, the node and primitive streak at these stages lack Cx43 mRNA. This result, together with the requirement for an intact blastoderm, suggests that the path of communication through gap junction channels circumvents the node and streak. We propose that left-right information is transferred unidirectionally throughout the epiblast by gap junction channels in order to pattern left-sided Shh expression at Hensen's node.


1992 ◽  
Vol 60 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Guo Xinbiao ◽  
Ohno Yasuo ◽  
Kawanishi Toru ◽  
Sunouchi Momoko ◽  
Takanaka Akira

1993 ◽  
Vol 264 (4) ◽  
pp. H1283-H1291 ◽  
Author(s):  
D. C. Zawieja ◽  
K. L. Davis ◽  
R. Schuster ◽  
W. M. Hinds ◽  
H. J. Granger

The propagation and coordination of lymphatic contractions were studied in the mesentery of the rat small intestine using in situ microscopic observation. Indexes of lymphatic diameter were simultaneously measured at two adjacent lymphangions in spontaneously contracting lymphatics (n = 51). Diameter index, contraction frequency, and the percentage of the intersegmental contractions that were propagated and coordinated (PP) were determined at both sites. The conduction velocity of the contractile activity and the percentage of the coordinated contractions that were propagated both antegrade to the direction of lymph flow and retrograde to the flow stream were determined. The results indicate that 1) 80-90% of the lymphatic contractions in the vessels we evaluated were propagated, 2) the wave of contractile activity propagated both centrally and peripherally, and 3) the conduction velocity of the contractile activity was approximately 4-8 mm/s. We tested the hypothesis that gap junctional communication is responsible for the coordination of the contractile event. To accomplish this, we used the gap junction blockers n-heptanol and oleic acid. PP was 90 +/- 4% under normal conditions and fell to a minimum value of 55 +/- 7% during the gap junction blockade. These results indicate that gap junctional communication played an important role in the propagation and coordination of contractions that occurred in spontaneously active lymphatics.


Sign in / Sign up

Export Citation Format

Share Document