scholarly journals Functional coupling of the downregulated in adenoma Cl−/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3

2009 ◽  
Vol 296 (2) ◽  
pp. G202-G210 ◽  
Author(s):  
Mark W. Musch ◽  
Donna L. Arvans ◽  
Gary D. Wu ◽  
Eugene B. Chang

Non-nutrient-dependent salt absorption across the brush-border membrane of intestinal epithelial cells is primarily mediated by coupled apical Na+/H+ (aNHE) and anion exchange transport, with the latter suspected of being mediated by DRA (downregulated in adenoma; SLC26A3) that is defective in congenital chloridorrhea. To investigate DRA in greater detail and determine whether DRA and NHE activities can be coupled, we measured 22Na+ and 36Cl− uptake in Caco2BBE colon cells infected with the tet-off-inducible DRA transgene. Under basal conditions, DRA activity was low in normal and infected Caco2BBE cells in the presence of tetracycline, whereas NHE activities could be easily detected. When apical NHE activity was increased by transfection or serum-induced expression of the aNHE isoforms NHE2 and NHE3, increased 36Cl− uptake was observed. Inhibition of DRA activity by niflumic acid was greater than that by DIDS as well as by the NHE inhibitor dimethylamiloride and the carbonic anhydrase inhibitor methazolamide. DRA activity was largely aNHE-dependent, whereas a component of DRA-independent aNHE uptake continued to be observed. Coupled aNHE and DRA activities were inhibited by increased cellular cAMP and calcium and were associated with synaptotagmin I-dependent, clathrin-mediated endocytosis. In summary, these data support the role of DRA in electroneutral NaCl absorption involving functional coupling of Cl−/base exchange and apical NHE.

2019 ◽  
Vol 20 (6) ◽  
pp. 1504 ◽  
Author(s):  
Subha Arthur ◽  
Palanikumar Manoharan ◽  
Shanmuga Sundaram ◽  
M Rahman ◽  
Balasubramanian Palaniappan ◽  
...  

Na-amino acid co-transporters (NaAAcT) are uniquely affected in rabbit intestinal villus cell brush border membrane (BBM) during chronic intestinal inflammation. Specifically, Na-alanine co-transport (ASCT1) is inhibited secondary to a reduction in the affinity of the co-transporter for alanine, whereas Na-glutamine co-transport (B0AT1) is inhibited secondary to a reduction in BBM co-transporter numbers. During chronic intestinal inflammation, there is abundant production of the potent oxidant peroxynitrite (OONO). However, whether OONO mediates the unique alteration in NaAAcT in intestinal epithelial cells during chronic intestinal inflammation is unknown. In this study, ASCT1 and B0AT1 were inhibited by OONO in vitro. The mechanism of inhibition of ASCT1 by OONO was secondary to a reduction in the affinity of the co-transporter for alanine, and secondary to a reduction in the number of co-transporters for B0AT1, which were further confirmed by Western blot analyses. In conclusion, peroxynitrite inhibited both BBM ASCT1 and B0AT1 in intestinal epithelial cells but by different mechanisms. These alterations in the villus cells are similar to those seen in the rabbit model of chronic enteritis. Therefore, this study indicates that peroxynitrite may mediate the inhibition of ASCT1 and B0AT1 during inflammation, when OONO levels are known to be elevated in the mucosa.


1970 ◽  
Vol 7 (2) ◽  
pp. 373-386
Author(s):  
A. R. LIMBRICK ◽  
J. B. FINEAN

Low-angle X-ray diffraction patterns have been obtained from condensed systems of brush border membranes which contain up to 30% water and also from hydrated samples of the lipid extracts of the membranes. The diffraction bands obtained from the hydrated membranes were orders (up to n=8) of a lamellar repeating unit of about 30 nm which included 2 membrane units. By referring to electron micrographs of these condensed membrane preparations, an electron density profile of the brush border membrane has been evaluated, and its significance in relation to the molecular organization of the membrane is discussed.


Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 111 ◽  
Author(s):  
Palanikumar Manoharan ◽  
Shanmuga Sundaram ◽  
Soudamani Singh ◽  
Uma Sundaram

During chronic intestinal inflammation in rabbit intestinal villus cells brush border membrane (BBM) Na-glucose co-transport (SGLT1), but not Na/H exchange (NHE3) is inhibited. The mechanism of inhibition is secondary to a decrease in the number of BBM co-transporters. In the chronic enteritis mucosa, inducible nitric oxide (iNO) and superoxide production are known to be increased and together they produce abundant peroxynitrite (OONO), a potent oxidant. However, whether OONO mediates the SGLT1 and NHE3 changes in intestinal epithelial cells during chronic intestinal inflammation is unknown. Thus, we determined the effect of OONO on SGLT1 and NHE3 in small intestinal epithelial cell (IEC-18) monolayers grown on trans well plates. In cells treated with 100 μM SIN-1 (OONO donor) for 24 h, SGLT1 was inhibited while NHE3 activity was unaltered. SIN-1 treated cells produced 40 times more OONO fluorescence compared to control cells. Uric acid (1mM) a natural scavenger of OONO prevented the OONO mediated SGLT1 inhibition. Na+/K+-ATPase which maintains the favorable trans-cellular Na gradient for Na-dependent absorptive processes was decreased by OONO. Kinetics studies demonstrated that the mechanism of inhibition of SGLT1 by OONO was secondary to reduction in the number of co-transporters (Vmax) without an alteration in the affinity. Western blot analysis showed a significant decrease in SGLT1 protein expression. Further, p38 mitogen-activated protein (MAP) kinase pathway appeared to mediate the OONO inhibition of SGLT1. Finally, at the level of the co-transporter, 3-Nitrotyrosine formation appears to be the mechanism of inhibition of SGLT1. In conclusion, peroxynitrite inhibited BBM SGLT1, but not NHE3 in intestinal epithelial cells. These changes and the mechanism of SGLT1 inhibition by OONO in IEC-18 cells is identical to that seen in villus cells during chronic enteritis. Thus, these data indicate that peroxynitrite, known to be elevated in the mucosa, may mediate the inhibition of villus cell BBM SGLT1 in vivo in the chronically inflamed intestine.


Sign in / Sign up

Export Citation Format

Share Document