Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans

2008 ◽  
Vol 295 (3) ◽  
pp. H1150-H1155 ◽  
Author(s):  
François Cottin ◽  
Claire Médigue ◽  
Yves Papelier

The aim of the study was to assess the instantaneous spectral components of heart rate variability (HRV) and systolic blood pressure variability (SBPV) and determine the low-frequency (LF) and high-frequency baroreflex sensitivity (HF-BRS) during a graded maximal exercise test. The first hypothesis was that the hyperpnea elicited by heavy exercise could entail a significant increase in HF-SBPV by mechanical effect once the first and second ventilatory thresholds (VTs) were exceeded. It was secondly hypothesized that vagal tone progressively withdrawing with increasing load, HF-BRS could decrease during the exercise test. Fifteen well-trained subjects participated in this study. Electrocardiogram (ECG), blood pressure, and gas exchanges were recorded during a cycloergometer test. Ventilatory equivalents were computed from gas exchange parameters to assess VTs. Spectral analysis was applied on cardiovascular series to compute RR and systolic blood pressure power spectral densities, cross-spectral coherence, gain, and α index of BRS. Three exercise intensity stages were compared: below (A1), between (A2), and above (A3) VTs. From A1 to A3, both HF-SBPV (A1: 45 ± 6, A2: 65 ± 10, and A3: 120 ± 23 mm2Hg, P < 0.001) and HF-HRV increased (A1: 20 ± 5, A2: 23 ± 8, and A3:40 ± 11 ms2, P < 0.02), maintaining HF-BRS (gain, A1: 0.68 ± 0.12, A2: 0.63 ± 0.08, and A3: 0.57 ± 0.09; α index, A1: 0.58 ± 0.08, A2: 0.48 ± 0.06, and A3: 0.50 ± 0.09 ms/mmHg, not significant). However, LF-BRS decreased (gain, A1: 0.39 ± 0.06, A2: 0.17 ± 0.02, and A3: 0.11 ± 0.01, P < 0.001; α index, A1: 0.46 ± 0.07, A2: 0.20 ± 0.02, and A3: 0.14 ± 0.01 ms/mmHg, P < 0.001). As expected, once VTs were exceeded, hyperpnea induced a marked increase in both HF-HRV and HF-SBPV. However, this concomitant increase allowed the maintenance of HF-BRS, presumably by a mechanoelectric feedback mechanism.

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A177-A177
Author(s):  
H Tsai ◽  
T Kuo ◽  
C Yang

Abstract Introduction Insomnia is a risk factor for hypertension and cardiovascular events, and this association is strongest for sleep-onset insomnia. However, little is known about insomnia on cardiovascular modulation, especially soon after morning awakening, the peak period of time for cardiovascular incidents. This study explored morning cardiovascular function in individuals with sleep-onset insomnia by analysing heart rate variability, blood pressure variability, and baroreflex sensitivity. Methods Sleep structure of the participants (15 good sleepers and 13 individuals with sleep-onset insomnia) was measured by laboratory polysomnography, followed by continuous recordings of the participant’s blood pressure and heart rate for 10 min in the morning. Results When compared to the good sleepers, the insomnia group showed significant reductions in total sleep time, a longer sleep-onset latency, and reduced sleep efficiency. The sleep structure, including durations of sleep stages, numbers of awakenings and arousal index did not differ between the groups. After morning awakening (averaged time: 12.33 ± 10.48 min), the shorter R-R intervals, lower total power, and lower high-frequency power of heart rate variability were observed among individuals with sleep-onset insomnia, compared with good sleepers. Elevated slopes of systolic and diastolic blood pressure, as well as lower baroreflex sensitivity, were also shown in the insomnia group. Indices of sympathetic activity, including low-frequency percentage of heart rate variability or low-frequency power of blood pressure variability, did not differ between the groups. Conclusion Weak vagal activity and blunted baroreflex sensitivity were evident among sleep-onset insomnia. These findings indicate difficulty in initiating sleep, without significant sleep fragmentation, can independently affect morning cardiovascular function. This study provides a possible link between sleep-onset insomnia and risk of cardiovascular events. Support N/A


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Li Xiong ◽  
Ge Tian ◽  
Xiangyan Chen ◽  
Howan Leung ◽  
Thomas Leung ◽  
...  

Background and Objectives: Blood pressure variability (BPV), heart rate variability (HRV) and baroreflex sensitivity (BRS) as measures of autonomic function might provide prognostic information in ischemic stroke. We aimed to study noninvasive beat-to-beat assessment of BPV, HRV and BRS in the acute phase of ischemic stroke to determine whether any of them predicted clinical outcome. Methods & Patients: Consecutive ischemic stroke patients within 7 days of symptom onset were enrolled. The frequency components of BPV and HRV by means of power spectral analysis [very low frequency (VLF; < 0.04 Hz); low frequency (LF; 0.04-0.15 Hz); high frequency (HF; 0.15-0.40 Hz); power spectral density (PSD; <0.40 Hz) and LF/HF ratio] were calculated from 10-minute recordings of beat-to-beat blood pressure and heart rate monitoring. The baroreflex slope and baroreflex effectiveness index (BEI) were determined using the sequence method for BRS. Clinical outcome was assessed at 3 months after stroke onset as good or poor by modified Rankin Scale (mRS) (good outcome, mRS ≤ 2). Results: 82 patients were recruited (mean age, 64.6 ± 9.9 years; 89.3% males). Univariate analysis showed that there were significant differences in National Institutes of Health Stroke Scale (NIHSS) at recruitment, VLF diastolic BPV, VLF, HF and PSD systolic BPV, and down ramp BEI between the good and poor outcome groups (all P < 0.05). After adjusting for NIHSS, multivariate logistic regression showed that only HF systolic BPV (OR 1.320; 95% CI, 1.050-1.659; P=0.017) and down BEI (OR 0.950; 95% CI, 0.912-0.990; P=0.014) were independently correlated with poor functional outcome. Conclusions: Beat-to beat highly variable systolic blood pressure and impaired BRS as evaluated by decreased down BEI are associated with an unfavorable functional outcome after acute ischemic stroke. Important prognostic information can be readily obtained from a short period of noninvasive hemodynamics monitoring in the acute stroke patient.


Author(s):  
Boligarla Anasuya ◽  
K. K. Deepak ◽  
Ashok Jaryal

Abstract Yoga has been shown to improve autonomic conditioning in humans, as evidenced by the enhancement of parasym-pathetic activity and baroreflex sensitivity. Therefore, we hypothesized that the experience of yoga may result in adaptation to acute hemodynamic changes. To decipher the long-term effects of yoga on cardiovascular variability, yoga practitioners were compared to yoga-naïve subjects during exposure to –40 mm Hg lower-body negative pressure (LBNP). A comparative study was conducted on 40 yoganaïve subjects and 40 yoga practitioners with an average age of 31.08 ± 7.31 years and 29.93 ± 7.57 years, respectively. Heart rate variability, blood pressure variability, baroreflex sensitivity, and correlation between systolic blood pressure and RR interval were evaluated at rest and during LBNP. In yoga practitioners, the heart rate was lower in supine rest (p = 0.011) and during LBNP (p = 0.043); the pNN50 measure of heart rate variability was higher in supine rest (p = 0.011) and during LBNP (p = 0.034). The yoga practitioners’ standard deviation of successive beat-to-beat blood pressure intervals of systolic blood pressure variability was lower in supine rest (p = 0.034) and during LBNP (p = 0.007), with higher sequence baroreflex sensitivity (p = 0.019) and ~ high-frequency baroreflex sensitivity. Mean systolic blood pressure and RR interval were inversely correlated in the yoga group (r = –0.317, p = 0.049). The yoga practitioners exhibited higher parasympathetic activity and baroreflex sensitivity with lower systolic blood pressure variability, indicating better adaptability to LBNP compared to the yoga-naïve group. Our findings indicate that the yoga module was helpful in conditions of hypovolemia in healthy subjects; it is proposed to be beneficial in clinical conditions associated with sympathetic dominance, impaired barore-flex sensitivity, and orthostatic intolerance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kamil Javorka ◽  
Katarina Haskova ◽  
Barbora Czippelova ◽  
Mirko Zibolen ◽  
Michal Javorka

Introduction: Cardiovascular system is the vitally important system in the dynamical adaptation process of the newborns to the extrauterine environment. To reliably detect immaturity in the given organ system, it is crucial to study the development of the organ functions in relation to maturation process.Objectives: The objective was to determine the changes in the spontaneous short-term blood pressure variability (BPV) and baroreflex sensitivity (BRS) reflecting various aspects of cardiovascular control during the process of maturation in preterm babies and to separate effects of gestational age and postnatal age.Methods: Thirty-three prematurely born infants without any signs of cardio-respiratory disorders (gestational age: 31.8, range: 27–36 weeks; birth weight: 1,704, range: 820–2,730 grams) were enrolled. Continuous peripheral blood pressure signal was obtained by non-invasive volume-clamp photoplethysmography method during supine rest. The recordings of 250 continuous beat-to-beat blood pressure values were processed by spectral analysis of BPV (assessed measures: total power, low frequency and high frequency powers of systolic BPV) and BRS calculation. For each infant we also assessed systolic, diastolic and mean blood pressures, heart rate and respiratory rate.Results: With the postconceptional age, BPV measures decreased (for total power: Spearman correlation coefficient rs = −0.345, P = 0.049; for low frequency power: rs = −0.365, P = 0.037; for high frequency power rs = −0.349; P = 0.046); and BRS increased significantly (rs = 0.448, P = 0.009). The further analysis demonstrated that these effects were more attributable to gestational age than to postnatal age. BRS correlated negatively with BPV magnitude (rs = −0.479 to −0.592, P = 0.001–0.005). Mean blood pressure and diastolic blood pressure increased during maturation (rs = 0.517 and 0.537, P = 0.002 and 0.001, respectively) while heart rate and respiratory rate decreased (rs = −0.366 and −0.516, P = 0.036 and 0.002, respectively).Conclusion: We conclude that maturation process is accompanied by an increased involvement of baroreflex buffering of spontaneous short-term blood pressure oscillations. Gestational age plays a dominant role not only in BPV changes but also in BRS, mean blood pressure, diastolic blood pressure and heart rate changes.


2005 ◽  
Vol 20 (4) ◽  
pp. 394 ◽  
Author(s):  
V. Papaioannou ◽  
M. Giannakou ◽  
N. Maglaveras ◽  
E. Sofianos ◽  
M. Giala

1971 ◽  
Vol 33 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Michael Hnatiow

Cardiac rate-variability control and an initial demonstration of systolic blood-pressure variability control using visual feedback of physiological information were examined. Continuous measures of respiration, heart rate, EXG waveform analysis, and systolic blood pressure were obtained for both experimental groups and for yoked controls who saw the same visual display as the experimental Ss. Ss successful at reducing heart-rate variability showed clear changes in the P-R wave relationships of the EKG, indicating possible direct attempts to manipulate heart rate so as to reduce variability. Ss controlling blood-pressure variability who had high heart rates were more successful in reducing variability than those with low rates, possibly because of differential feedback to Ss with high and low heart rates. In addition, apparently as a reaction to E's adjustment of the visual target range, experimental Ss showed decreases in mean blood-pressure levels.


2004 ◽  
Vol 96 (6) ◽  
pp. 2333-2340 ◽  
Author(s):  
Tomi Laitinen ◽  
Leo Niskanen ◽  
Ghislaine Geelen ◽  
Esko Länsimies ◽  
Juha Hartikainen

In elderly subjects, heart rate responses to postural change are attenuated, whereas their vascular responses are augmented. Altered strategy in maintaining blood pressure homeostasis during upright position may result from various cardiovascular changes, including age-related cardiovascular autonomic dysfunction. This exploratory study was conducted to evaluate impact of age on cardiovascular autonomic responses to head-up tilt (HUT) in healthy subjects covering a wide age range. The study population consisted of 63 healthy, normal-weight, nonsmoking subjects aged 23–77 yr. Five-minute electrocardiogram and finger blood pressure recordings were performed in the supine position and in the upright position 5 min after 70° HUT. Stroke volume was assessed from noninvasive blood pressure signals by the arterial pulse contour method. Heart rate variability (HRV) and systolic blood pressure variability (SBPV) were analyzed by using spectral analysis, and baroreflex sensitivity (BRS) was assessed by using sequence and cross-spectral methods. Cardiovascular autonomic activation during HUT consisted of decreases in HRV and BRS and an increase in SBPV. These changes became attenuated with aging. Age correlated significantly with amplitude of HUT-stimulated response of the high-frequency component ( r = -0.61, P < 0.001) and the ratio of low-frequency to high-frequency power of HRV ( r = -0.31, P < 0.05) and indexes of BRS (local BRS: r = -0.62, P < 0.001; cross-spectral baroreflex sensitivity in the low-frequency range: r = -0.38, P < 0.01). Blood pressure in the upright position was maintained well irrespective of age. However, the HUT-induced increase in heart rate was more pronounced in the younger subjects, whereas the increase in peripheral resistance was predominantly observed in the older subjects. Thus it is likely that whereas the dynamic capacity of cardiac autonomic regulation decreases, vascular responses related to vasoactive mechanisms and vascular sympathetic regulation become augmented with increasing age.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Kátia B Scapini ◽  
Valéria C Hong ◽  
Janaína B Ferreira ◽  
Sílvia B Souza ◽  
Naomi V Ferreira ◽  
...  

Background: Patients with end-stage renal disease (ESRD) undergoing hemodialysis are susceptible to the development of autonomic dysfunction, which is associated with an increased risk of sudden death. Experimental and clinical evidence suggest a crucial role of autonomic dysfunction for both, the progression of renal disease and for the high rate of cardiovascular events in these patients. In the present study, we evaluated the heart rate variability (HRV), the blood pressure variability (BPV) and the baroreflex sensitivity (BRS) in ESRD patients undergoing hemodialysis and normal controls. Methods: Nine ESRD patients undergoing hemodialysis (mean age 53.4±10.2 years, 4 male) and nine age-matched healthy controls (mean age 52.8±10.2 years, 4 male) were assessed. Non−invasive curves of blood pressure (BP) were recorded continuously (Finometer ®) for 10 minutes, at rest, in the supine position. The heart rate variability (HRV) and systolic blood pressure variability (BPV) were estimated in the time and frequency domain (spectral analysis). The BRS was quantified by alpha index. Statistical analyzes were performed by Student's t test and the results were expressed as mean ± standard deviation. Results: ESRD patients presented lower HRV in time domain than healthy controls (SDNN: 25.8±10.7 vs. 44.6±11.7 ms, p<0.01; VAR NN: 768.3±607.4 vs. 2113.9±1261.6 ms 2 , p=0.01). All frequency domain analyzed indexes, i.e., total power (361.9±297.0 vs. 1227.2±696.3 ms 2 , p<0.01), high-frequency (181.8±128.7 vs. 358.7±179.8 ms 2 , p=0.047), low-frequency (55.1±44.2 vs. 444.6±389.9 ms 2 , p=0.02) and very-low-frequency (72.5±75.1 vs. 279.2±119.5 ms 2 , p<0.01) of HRV were lower in ESRD patients. The BPV was higher in ESRD patients when compared to controls (VAR PAS: 98.4±72.0 vs. 35.4±21.4 ms 2 , p=0.03) and BRS was lower in ESRD patients (alpha index: 4.34±3.05 vs. 7.56±2.50 ms/mmHg, p<0.02). Conclusion: ESRD patients undergoing hemodialysis presents reduced HRV, increase in BPV and reduced baroreflex sensitivity. These impairments may be associated with mortality in ESRD.


Sign in / Sign up

Export Citation Format

Share Document