NO production and eNOS phosphorylation induced by epinephrine through the activation of β-adrenoceptors

2009 ◽  
Vol 297 (1) ◽  
pp. H134-H143 ◽  
Author(s):  
Xavier F. Figueroa ◽  
Inés Poblete ◽  
Ricardo Fernández ◽  
Cristóbal Pedemonte ◽  
Víctor Cortés ◽  
...  

Epinephrine plays a key role in the control of vasomotor tone; however, the participation of the NO/cGMP pathway in response to β-adrenoceptor activation remains controversial. To evaluate the involvement of the endothelium in the vascular response to epinephrine, we assessed NO production, endothelial NO synthase phosphorylation, and tissue accumulation of cGMP in the perfused arterial mesenteric bed of rat. Epinephrine elicited a concentration-dependent increase in NO (EC50 of 45.7 pM), which was coupled to cGMP tissue accumulation. Both NO and cGMP production were blocked by either endothelium removal (saponin) or NO synthase inhibition ( Nω-nitro-l-arginine). Blockade of β1- and β2-adrenoceptors with 1 μM propranolol or β3-adrenoceptor with 10 nM SR 59230A displaced rightward the concentration-NO production curve evoked by epinephrine. Selective stimulation of β1-, β2-, or β3-adrenoceptors also resulted in NO and cGMP production. Propranolol (1 μM) inhibited the rise in NO induced by isoproterenol or the β2-adrenoceptor agonists salbutamol, terbutaline, or fenoterol. Likewise, 10 nM SR 59230A reduced the effects of the β3-adrenoceptor agonists BRL 37344, CGP 12177, SR 595611A, or pindolol. The NO production induced by epinephrine and BRL 37344 was associated with the activation of the phosphatidylinositol 3-kinase/Akt pathway and phosphorylation of eNOS in serine 1177. In addition, in anaesthetized rats, bolus administration of isoproterenol, salbutamol, or BRL 37344 produced NO-dependent reductions in systolic blood pressure. These findings indicate that β1-, β2-, and β3-adrenoceptors are coupled to the NO/cGMP pathway, highlighting the role of the endothelium in the vasomotor action elicited by epinephrine and related β-adrenoceptor agonists.

1997 ◽  
Vol 272 (4) ◽  
pp. H1730-H1740 ◽  
Author(s):  
R. R. Magness ◽  
C. E. Shaw ◽  
T. M. Phernetton ◽  
J. Zheng ◽  
I. M. Bird

Pregnancy is characterized by elevations in uterine but not omental artery nitric oxide synthase (NOS)-specific activity. We hypothesized that increases in NO production during pregnancy are associated with elevations in protein expression of the constitutive isoform, endothelial cell NOS (ecNOS), in uterine but not systemic arteries. Arterial NOS-specific activity and guanosine 3',5'-cyclic monophosphate (cGMP) production were tested in pregnant sheep in the presence or absence [+5 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] of Ca2+. With the use of Western analysis, ecNOS and neuronal NOS (nNOS) constitutive isoform expressions were evaluated in intact and denuded [vascular smooth muscle (VSM)] uterine and systemic (omental and renal) arteries as well as in isolated endothelium-derived proteins from nonpregnant and pregnant sheep. Uterine and omental artery NOS activity and cGMP production were inhibited 75-85% by Ca2+ removal. ecNOS was localized only in uterine and systemic artery endothelium (not VSM) by immunohistochemistry and Western analysis; nNOS was not detected. Compared with nonpregnant ewes, pregnancy increased expression of ecNOS in uterine [2.1- to 4.2-fold (P < 0.0001)] and omental [1.3- to 2.2-fold (P = 0.032)] but not renal (P = 0.1367) artery endothelium. Increases in uterine were greater than in omental artery endothelium. Levels of plasma and urinary cGMP were elevated (P < 0.01) proportionally (1.8- to 2.0-fold) in pregnant versus nonpregnant ewes. During pregnancy, expression of uterine artery endothelium-derived (not VSM) ecNOS constitutive isoform is increased, whereas expression in systemic vessels shows little or no change.


1997 ◽  
Vol 272 (1) ◽  
pp. F31-F39 ◽  
Author(s):  
I. Tack ◽  
E. M. Castano ◽  
C. Pecher ◽  
F. Praddaude ◽  
J. L. Bascands ◽  
...  

The ability of endothelins (ETs) to modulate nitric oxide-dependent glomerular guanosine 3'-5'-cyclic monophosphate (cGMP) production has recently been reported. The aim of this study was to directly confirm, using an antagonist, the involvement of the ETB receptor subtype and to investigate the potential role of mesangial cells (MC) in this ET-induced cGMP production. In glomeruli freshly isolated from rats, endothelin-3 (ET-3) induced a dose-dependent increase in cGMP content. This increase was inhibited by NG-monomethyl-L-arginine (L-NMMA) and methylene blue and was calcium dependent. Moreover, the effect of ET-3 was prevented by two ETB-selective receptor antagonists, BQ-788 and IRL-1038, but not by BQ-123, an ETA-selective receptor antagonist. It therefore appeared that ET-3 stimulates the glomerular constitutive NO pathway through activation of the ETB receptor subtype. In contrast, ET-3 and calcium ionophore had no effect on cGMP formation in cultured MC, whereas incubation with sodium nitroprusside resulted in an approximately 50-fold increase in the intracellular content of cGMP. However, ET-3 induced a dose-dependent rise in free MC cytosolic calcium that was abolished by an ETB antagonist. Moreover, both ETA and ETB receptors mRNA were expressed in primary cultures of MC. Finally, we failed to detect the presence of constitutive NO synthase (NOS), as demonstrated by the absence of L-citrulline forming activity and of the mRNA encoding for endothelial NOS, whereas they were present in isolated glomeruli. These data indicate that MC, despite the fact that they express ETB receptors, are not involved in glomerular NO production induced by exposure to ET-3, because they do not express constitutive NO synthase.


1997 ◽  
Vol 86 (3) ◽  
pp. 689-698 ◽  
Author(s):  
Appavoo Rengasamy ◽  
Thomas N. Pajewski ◽  
Roger A. Johns

Background Inhalational anesthetics interact with the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway in the central nervous system (CNS) and attenuate excitatory neurotransmitter-induced cGMP concentration. The site of anesthetic action on the NO-cGMP pathway in the CNS remains controversial. This study investigated the effect of inhalational anesthetics on N-methyl-D-aspartate (NMDA)-stimulated NO synthase activity and cyclic cGMP production in rat cerebellum slices. Methods The interaction of inhalational anesthetics with NO synthase activation and cGMP concentration was determined in cerebellum slices of 10-day-old rats. Nitric oxide synthase activity in cerebellum slices was assessed by measuring the conversion of L-[3H]arginine to L-[3H]citrulline. The cGMP content of cerebellum slices was measured by radioimmunoassay. Results Isoflurane at 1.5% and 3% enhanced the NMDA-stimulated NO synthase activity by two times while halothane at 1.5% and 3% produced no significant effect. However, the NMDA-stimulated cGMP production was inhibited by both anesthetic agents. The anesthetic inhibition of cGMP accumulation was not significantly altered by a mixture of superoxide dismutase and catalase or by glycine, a coagonist of the NMDA receptor. Conclusions The enhancement of NMDA-induced NO synthase activity by isoflurane and the inhibition of NMDA-stimulated cGMP production by halothane and isoflurane suggests that inhalational anesthetics interfere with the neuronal NO-cGMP pathway. This inhibitory effect of anesthetics on cGMP accumulation is not due to either their interaction with the glycine binding site of the NMDA receptor or to the action of superoxide anions.


1996 ◽  
Vol 270 (6) ◽  
pp. H1914-H1923 ◽  
Author(s):  
R. R. Magness ◽  
C. R. Rosenfeld ◽  
A. Hassan ◽  
P. W. Shaul

Uterine vasculature is less responsive than systemic vasculature to angiotensin II (ANG II)-induced vasoconstriction. We hypothesized that pregnancy augments basal and ANG II-stimulated endothelial prostacyclin (PGI2) and/or nitric oxide (NO) production, which locally increase vascular smooth muscle (VSM) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP), respectively. Uterine (UA) and systemic arteries (SA) from pregnant (P) and nonpregnant (NP) sheep were incubated with isobutylmethylxanthine. Basal PGI2, cAMP, and cGMP production was 2.4-, 1.6-, and 5.9-fold greater (P < 0.01) in UA from P vs. NP sheep; endothelium removal lowered (P < 0.05) values 69, 44, and 88%. Basal SA PGI2 and cAMP, but not cGMP, also were elevated by pregnancy. Indomethacin (Indo; 100 microM) decreased PGI2 and cAMP, but not cGMP production; N omega-nitro-L-arginine methyl ester (L-NAME; 10 microM) and methylene blue (MB, 10 microM) only decreased cGMP. Basal UA, but not SA, NO synthase activity (conversion of [3H]arginine to [3H]citrulline), was 1.8-fold higher in pregnancy and decreased (P < 0.01) after endothelium removal and with L-NAME. ANG II (50 nM) increased PGI2 (86%) and cAMP (56%) production only in UA from P sheep (P < 0.05); this was abolished by endothelium removal or Indo. ANG II also increased (P < 0.01) cGMP production by UA from both groups but only by SA from P ewes; this was absent in denuded, L-NAME-, or MB-treated vessels. Stimulation of VSM cGMP production with sodium nitroprusside (50 microM) was inhibited by MB, but not L-NAME or endothelium removal. In pregnancy, endothelial PGI2 and NO production are enhanced and may contribute to attenuated ANG II vasoconstriction via VSM cAMP and cGMP.


1994 ◽  
Vol 267 (1) ◽  
pp. F190-F195 ◽  
Author(s):  
H. Tsukahara ◽  
Y. Krivenko ◽  
L. C. Moore ◽  
M. S. Goligorsky

It has been hypothesized that fluctuations of the ionic composition in the interstitium of juxtaglomerular apparatus (JGA) modulate the function of extraglomerular mesangial cells (MC), thereby participating in tubuloglomerular feedback (TGF) signal transmission. We examined the effects of isosmotic reductions in ambient sodium concentration ([Na+]) and [Cl-] on cytosolic calcium concentration ([Ca2+]i) in cultured rat MC. Rapid reduction of [Na+] or [Cl-] in the bath induced a concentration-dependent rise in [Ca2+]i. MC are much more sensitive to decreases in ambient [Cl-] than to [Na+]; a decrease in [Cl-] as small as 14 mM was sufficient to elicit a detectable [Ca2]i response. These observations suggest that MC can be readily stimulated by modest perturbations of extracellular [Cl-]. Next, we examined whether activation of MC by lowered ambient [Cl-] influences cellular nitric oxide (NO) production. Using an amperometric NO sensor, we found that a 13 mM decrease in ambient [Cl-] caused a rapid, Ca2+/calmodulin-dependent rise in NO release from MC. This response was not inhibitable by dexamethasone, indicating the involvement of the constitutive rather than the inducible type of NO synthase in MC. In addition, the NO release was blunted by indomethacin pretreatment, suggesting that a metabolite(s) of cyclooxygenase regulates the activation of NO synthase in MC. Our findings that small perturbations in external [Cl-] stimulate MC to release NO, a highly diffusible and rapidly acting vasodilator, provide a possible mechanism to explain the transmission of the signal for the TGF response within the JGA.


2004 ◽  
Vol 287 (1) ◽  
pp. L60-L68 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Tamara L. Young ◽  
Leif D. Nelin

Nitric oxide (NO) is produced by NO synthase (NOS) from l-arginine (l-Arg). Alternatively, l-Arg can be metabolized by arginase to produce l-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with l-valine (l-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-α (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of l-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM l-Val, EGM with 10 mM l-Arg, or EGM with both 10 mM l-Arg and 30 mM l-Val. In both control and L/T bPAEC, treatment with l-Val decreased urea production and increased NO production. Treatment with l-Arg increased both urea and NO production. The addition of the combination l-Arg and l-Val decreased urea production compared with the addition of l-Arg alone and increased NO production compared with l-Val alone. These data suggest that competition for intracellular l-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.


2014 ◽  
Vol 307 (5) ◽  
pp. H803-H809 ◽  
Author(s):  
Kelly A. Hyndman ◽  
Dao H. Ho ◽  
Martiana F. Sega ◽  
Jennifer S. Pollock

The lysine acetylation state of nonhistone proteins may be regulated through histone deacetylases (HDACs). Evidence suggests that nitric oxide (NO) synthase 3 (NOS3; endothelial NOS) is posttranslationally lysine acetylated, leading to increased NO production in the endothelium. We tested the hypothesis that NOS3 is lysine acetylated and that upregulated HDAC1-mediated deacetylation leads to reduced NO production in endothelial cells. We determined that NOS3 is basally lysine acetylated in cultured bovine aortic endothelial cells (BAECs). In BAECs, HDAC1 is expressed in the nucleus and cytosol and forms a novel protein-protein interaction with NOS3. Overexpression of HDAC1 in BAECs resulted in a significant reduction in NOS3 lysine acetylation (control = 1.0 ± 0.1 and HDAC1 = 0.59 ± 0.08 arbitrary units, P < 0.01) and significantly blunted basal nitrite production (control 287.7 ± 29.1 and HDAC1 172.4 ± 31.7 pmol·mg−1·h−1, P < 0.05) as well as attenuating endothelin-1-stimulated nitrite production (control = 481.8 ± 50.3 and HDAC1 243.1 ± 48.2 pmol·mg−1·h−1, P < 0.05). While HDAC1 knockdown with small-interfering RNA resulted in no change in NOS3 acetylation level, yet increased basal nitrite production (730.6 ± 99.1 pmol·mg−1·h−1) and further exaggerated increases in endothelin-1 stimulated nitrite production (1276.9 ± 288.2 pmol·mg−1·h−1) was observed. Moreover, overexpression or knockdown of HDAC1 resulted in no significant effect on NOS3 protein expression or NOS3 phosphorylation sites T497, S635, or S1179. Thus these data indicate that upregulated HDAC1 decreases NOS3 activity, most likely through direct lysine deacetylation of NOS3. We propose that HDAC1-mediated deacetylation of NOS3 may represent a novel target for endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document