Protective effects of ascorbic acid on arterial hemodynamics during acute hyperglycemia

2004 ◽  
Vol 287 (3) ◽  
pp. H1262-H1268 ◽  
Author(s):  
Brian A. Mullan ◽  
Ciaran N. Ennis ◽  
Howard J. P. Fee ◽  
Ian S. Young ◽  
David R. McCance

Mortality increases when acute coronary syndromes are complicated by stress-induced hyperglycemia. Early pulse wave reflection can augment central aortic systolic blood pressure and increase left ventricular strain. Altered pulse wave reflection may contribute to the increase in cardiac risk during acute hyperglycemia. Chronic ascorbic acid (AA) supplementation has recently been shown to reduce pulse wave reflection in diabetes. We investigated the in vivo effects of acute hyperglycemia, with and without AA pretreatment, on pulse wave reflection and arterial hemodynamics. Healthy male volunteers were studied. Peripheral blood pressure (BP) was measured at the brachial artery, and the SphygmoCor pulse wave analysis system was used to derive central BP, the aortic augmentation index (AIx; measure of systemic arterial stiffness), and the time to pulse wave refection ( Tr; measure of aortic distensibility) from noninvasively obtained radial artery pulse pressure (PP) waveforms. Hemodynamics were recorded at baseline and then every 30 min during a 120-min systemic hyperglycemic clamp (14 mmol/l). The subjects, studied on two separate occasions, were randomized in a double-blind, crossover manner to placebo or 2 g intravenous AA before the initiation of hyperglycemia. During hyperglycemia, AIx increased and Tr decreased. Hyperglycemia did not change peripheral PP but did magnify central aortic PP and diminished the normal physiological amplification of PP from the aorta to the periphery. Pulse wave reflection, as assessed from peripheral pulse wave analysis, is enhanced during acute hyperglycemia. Pretreatment with AA prevented the hyperglycemia-induced hemodynamic changes. By protecting hemodynamics during acute hyperglycemia, AA may have therapeutic use.

2007 ◽  
Vol 102 (6) ◽  
pp. 2128-2134 ◽  
Author(s):  
Koen D. Reesink ◽  
Evelien Hermeling ◽  
M. Christianne Hoeberigs ◽  
Robert S. Reneman ◽  
Arnold P. G. Hoeks

Central blood pressure waveforms contain specific features related to cardiac and arterial function. We investigated posture-related changes in ventriculoarterial hemodynamics by means of carotid artery (CA) pulse wave analysis. ECG, brachial cuff pressure, and common CA diameter waveforms (by M-mode ultrasound) were obtained in 21 healthy volunteers (19–30 yr of age, 10 men and 11 women) in supine and sitting positions. Pulse wave analysis was based on a timing extraction algorithm that automatically detects acceleration maxima in the second derivative of the CA pulse waveform. The algorithm enabled determination of isovolumic contraction period (ICP) and ejection period (EP): ICP = 43 ± 8 (SD) ms (4-ms precision), and EP = 302 ± 16 (SD) ms (5-ms precision). Compared with the supine position, in the sitting position diastolic blood pressure (DBP) increased by 7 ± 4 mmHg ( P < 0.001) and R-R interval decreased by 49 ± 82 ms ( P = 0.013), reflecting normal baroreflex response, whereas EP decreased to 267 ± 19 ms ( P < 0.001). Shortening of EP was significantly correlated to earlier arrival of the lower body peripheral reflection wave ( r2 = 0.46, P < 0.001). ICP increased by 7 ± 7 ms ( P < 0.001), the ICP-to-EP ratio increased from 14 ± 3% (supine) to 19 ± 3% ( P < 0.001) and the DBP-to-ICP ratio decreased by 7% ( P = 0.023). These results suggest that orthostasis decreases left ventricular output as a result of arterial wave reflections and, presumably, reduced cardiac preload. We conclude that CA ultrasound and pulse wave analysis enable noninvasive quantification of ventriculoarterial responses to changes in posture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulo Farinatti ◽  
Alex da Silva Itaborahy ◽  
Tainah de Paula ◽  
Walace David Monteiro ◽  
Mário F. Neves

AbstractThe acute effects of exercise modes on pulse wave reflection (PWR) and their relationship with autonomic control remain undefined, particularly in individuals with elevated blood pressure (BP). We compared PWR and autonomic modulation after acute aerobic (AE), resistance (RE), and concurrent exercise (CE) in 15 men with stage-1 hypertension (mean ± SE: 34.7 ± 2.5 years, 28.4 ± 0.6 kg/m2, 133 ± 1/82 ± 2 mmHg). Participants underwent AE, RE, and CE on different days in counterbalanced order. Applanation tonometry and heart rate variability assessments were performed before and 30-min postexercise. Aortic pressure decreased after AE (− 2.4 ± 0.7 mmHg; P = 0.01), RE (− 2.2 ± 0.6 mmHg; P = 0.03), and CE (− 3.1 ± 0.5 mmHg; P = 0.003). Augmentation index remained stable after RE, but lowered after AE (− 5.1 ± 1.7%; P = 0.03) and CE (− 7.6 ± 2.4% P = 0.002). Systolic BP reduction occurred after CE (− 5.3 ± 1.9 mmHg). RR-intervals and parasympathetic modulation lowered after all conditions (~ 30–40%; P < 0.05), while the sympathovagal balance increased after RE (1.2 ± 0.3–1.3 ± 0.3 n.u., P < 0.05). Changes in PWR correlated inversely with sympathetic and directly with vagal modulation in CE. In conclusion, AE, RE, and CE lowered central aortic pressure, but only AE and CE reduced PWR. Overall, those reductions related to decreased parasympathetic and increased sympathetic outflows. Autonomic fluctuations seemed to represent more a consequence than a cause of reduced PWR.


Author(s):  
Ioana Mozos ◽  
Cristina Gug ◽  
Costin Mozos ◽  
Dana Stoian ◽  
Marius Pricop ◽  
...  

The present study aimed to explore the relationship between electrocardiographic (ECG) and pulse wave analysis variables in patients with hypertension (HT) and high normal blood pressure (HNBP). A total of 56 consecutive, middle-aged hypertensive and HNBP patients underwent pulse wave analysis and standard 12-lead ECG. Pulse wave velocity (PWV), heart rate, intrinsic heart rate (IHR), P wave and QT interval durations were as follows: 7.26 ± 0.69 m/s, 69 ± 11 beats/minute, 91 ± 3 beats/minute, 105 ± 22 mm and 409 ± 64 mm, respectively. Significant correlations were obtained between PWV and IHR and P wave duration, respectively, between early vascular aging (EVA) and P wave and QT interval durations, respectively. Linear regression analysis revealed significant associations between ECG and pulse wave analysis variables but multiple regression analysis revealed only IHR as an independent predictor of PWV, even after adjusting for blood pressure variables and therapy. Receiver-operating characteristic (ROC) curve analysis revealed P wave duration (area under curve (AUC) = 0.731; 95% CI: 0.569–0.893) as a predictor of pathological PWV, and P wave and QT interval durations were found as sensitive and specific predictors of EVA. ECG provides information about PWV and EVA in patients with HT and HNBP. IHR and P wave durations are independent predictors of PWV, and P wave and QT interval may predict EVA.


2018 ◽  
Vol 12 (4) ◽  
pp. 275-284 ◽  
Author(s):  
Matthew J. Burns ◽  
Jeremy D. Seed ◽  
Anthony V. Incognito ◽  
Connor J. Doherty ◽  
Karambir Notay ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Areeg E. Elemam ◽  
Nisreen D. Omer ◽  
Neima M. Ibrahim ◽  
Ahmed B. Ali

Background. The current study investigated the effect of dipping tobacco (DT) use on arterial wall stiffness which is a known marker of increased risk of cardiovascular events. Methods. A case-control study which included 101 adult males was carried out in Al-Shaab Teaching Hospital. Blood pressure and pulse wave analysis parameters were recorded in 51 DT users (study group) before and after 30 minutes of placing tobacco and in 50 nontobacco users (control group). Anthropometric measurements were collected using data collection sheet. Data were entered into a computer and analyzed by using the software Statistical Package for the Social Sciences (SPSS) version 20 (SPSS Inc., Chicago, IL, USA). Results. At baseline measurements, heart rate (HR) was significantly lower in the study group compared to the control group ( 66.15 ± 9.21 vs. 72.87 ± 10.13 beats/min; P value ≤ 0.001). Subendocardial viability ratio (SEVR) was significantly higher in the study group compared to the control group ( 203.44 ± 30.34 vs. 179.11 ± 30.51 % ; P value ≤ 0.001). Acute effects of DT compared to pretobacco dipping showed significant increase in HR ( 72.50 ± 10.89 vs. 66.15 ± 9.21 beats/min; P value ≤ 0.001) and significant decrease in augmentation pressure (AP) (4.30 (2.30-8.00) vs. 3.30 (0.60-6.3) mmHg; P value ≤ 0.001), ejection duration (ED) ( 271.65 ± 19.42 vs. 279.53 ± 20.47   ms ; P value ≤ 0.001), and SEVR ( 187.11 ± 29.81 vs. 203.44 ± 30.34 ; P value ≤ 0.001). Linear regression analysis for AP predictor showed that only HR and AIx@75 affect and predict the values of AP ( Beta ± SE ; − 0.242 ± 0.019 , P value ≤ 0.001; 0.685 ± 0.014 , P value ≤ 0.001). Conclusions. Long-term use of DT was not associated with permanent changes in heart rate and blood pressure. Acute tobacco dipping caused an acute increase in heart rate and oxygen demands of myocardium.


Sign in / Sign up

Export Citation Format

Share Document