scholarly journals Effects of aerobic, resistance and concurrent exercise on pulse wave reflection and autonomic modulation in men with elevated blood pressure

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulo Farinatti ◽  
Alex da Silva Itaborahy ◽  
Tainah de Paula ◽  
Walace David Monteiro ◽  
Mário F. Neves

AbstractThe acute effects of exercise modes on pulse wave reflection (PWR) and their relationship with autonomic control remain undefined, particularly in individuals with elevated blood pressure (BP). We compared PWR and autonomic modulation after acute aerobic (AE), resistance (RE), and concurrent exercise (CE) in 15 men with stage-1 hypertension (mean ± SE: 34.7 ± 2.5 years, 28.4 ± 0.6 kg/m2, 133 ± 1/82 ± 2 mmHg). Participants underwent AE, RE, and CE on different days in counterbalanced order. Applanation tonometry and heart rate variability assessments were performed before and 30-min postexercise. Aortic pressure decreased after AE (− 2.4 ± 0.7 mmHg; P = 0.01), RE (− 2.2 ± 0.6 mmHg; P = 0.03), and CE (− 3.1 ± 0.5 mmHg; P = 0.003). Augmentation index remained stable after RE, but lowered after AE (− 5.1 ± 1.7%; P = 0.03) and CE (− 7.6 ± 2.4% P = 0.002). Systolic BP reduction occurred after CE (− 5.3 ± 1.9 mmHg). RR-intervals and parasympathetic modulation lowered after all conditions (~ 30–40%; P < 0.05), while the sympathovagal balance increased after RE (1.2 ± 0.3–1.3 ± 0.3 n.u., P < 0.05). Changes in PWR correlated inversely with sympathetic and directly with vagal modulation in CE. In conclusion, AE, RE, and CE lowered central aortic pressure, but only AE and CE reduced PWR. Overall, those reductions related to decreased parasympathetic and increased sympathetic outflows. Autonomic fluctuations seemed to represent more a consequence than a cause of reduced PWR.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Gurevich ◽  
I Emelyanov ◽  
N Zherdev ◽  
D Chernova ◽  
A Chernov ◽  
...  

Abstract Background The presence of aortic aneurysm can alters pulse wave propagation and reflection, causing changes in central aortic pressure and pulse pressure amplification (PPA) between the aorta and the brachial artery that might be associated with unfavorable hemodynamic effects for the central arteries and the heart. However, the impact of the location of the aneurysm and increase of the aortic diameter on central blood pressure (CBP) is not fully understood. Objective To investigate central aortic pressure and PPA regarding to association with arterial stiffness and aortic diameter in patients with ascending aortic aneurysm (AA), descending thoracic and abdominal aortic aneurysm (TAA and AAA). Methods 122 patients (96 males, 65±11 years) with aortic aneurysm were enrolled before aortic repair. The parameters of the aorta were evaluated by MSCT angiography: 44 patients (30 males, 55±13 years) had AA (the maximum diameter: 59.9±14.2 mm), 13 patients (11 males, 62±11 years) had TAA (the maximum diameter: 62.8±8.0 mm) and 65 patients (54 males, 69±8 years) had AAA (the maximum diameter: 52.3±17.2 mm). Brachial blood pressure (BBP) was measured by OMRON. CBP, augmentation index (AIx), carotid-femoral pulse wave velocity (PWV) were assessed by SphygmoCor. PPA was calculated as a difference between the values of central and brachial pulse pressure (CPP and BPP). Results Patients of the three groups did not differ in BPP (AA: 59.2±17.6; TAA 56.8±12.8; AAA: 59.3±11.4 mm Hg; P=0.5). Intergroup comparison revealed a difference in CPP between the three patients groups: CPP was higher in patients with AA and AAA, lower in patients with TAA (AA: 50.3±16.2; TAA 43.8±10.8; AAA: 50.0±11.2 mm Hg; P=0.05). PPA was lower in patients with AA and AAA than in patients with TAA (9.6±6.7 and 9.3±4.2 vs. 13.0±6.5 mm Hg; P=0.05 and P=0.04, respectively). IAx was higher in patients with AA and AAA than in patients with TAA (25.2±8.1 and 27.6±8.2 vs. 17.2±8.2 mm Hg; P=0.008 and P=0.001, respectively). A decrease of PPA across all patients correlated with an increase of IAx (r = - 0.268; P=0.003). CPP decreased with an increase of the aortic diameter for each level of the aneurysm (AA: r = - 0.460, P=0.016; TAA: r = - 0.833, P=0.003; AAA: r = - 0.275, P=0.05). PWV decreased with the expansion of the maximum aortic diameter at the level of the AA, TAA and AAA: (r = - 0.389, P=0.03; r = - 0.827, P=0.02 and r = - 0.350, P=0.01, respectively). Conclusion In patients with aortic aneurysm measurements of lower central pulse pressure and reduced PWV indicate an association with increased diameter of the aneurysm. An increase in augmentation index, early return of reflected waves, thus smaller PP amplification and higher CPP were identified in patients with ascending and abdominal aortic aneurysm compared by patients with descending thoracic aortic aneurysm. Funding Acknowledgement Type of funding source: None


2018 ◽  
Vol 12 (4) ◽  
pp. 275-284 ◽  
Author(s):  
Matthew J. Burns ◽  
Jeremy D. Seed ◽  
Anthony V. Incognito ◽  
Connor J. Doherty ◽  
Karambir Notay ◽  
...  

2021 ◽  
Author(s):  
William B Horton ◽  
Linda A Jahn ◽  
Lee M Hartline ◽  
Kevin W Aylor ◽  
James T Patrie ◽  
...  

Abstract Introduction: Increasing arterial stiffness is a feature of vascular aging that is accelerated by conditions that enhance cardiovascular risk, including diabetes mellitus. Multiple studies demonstrate divergence of carotid-femoral pulse wave velocity and augmentation index in persons with diabetes mellitus, though mechanisms responsible for this are unclear.Materials and Methods: We tested the effect of acutely and independently increasing plasma glucose, plasma insulin, or both on hemodynamic function and markers of arterial stiffness (including carotid-femoral pulse wave velocity, augmentation index, forward and backward wave reflection amplitude, and wave reflection magnitude) in a four-arm, randomized study of healthy young adults.Results: Carotid-femoral pulse wave velocity increased only during hyperglycemic-hyperinsulinemia (+0.36 m/s; p=0.032), while other markers of arterial stiffness did not change (all p>0.05). Heart rate (+3.62 bpm; p=0.009), mean arterial pressure (+4.14 mmHg; p=0.033), central diastolic blood pressure (+4.16 mmHg; p=0.038), and peripheral diastolic blood pressure (+4.09 mmHg; p=0.044) also significantly increased during hyperglycemic-hyperinsulinemia.Conclusions: We conclude that the acute combination of moderate hyperglycemia and hyperinsulinemia preferentially stiffens central elastic arteries. This effect may be due to increased sympathetic activity. (ClinicalTrials.gov number NCT03520569; registered 9 May 2018).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Eleni Georgianou ◽  
Panagiotis I. Georgianos ◽  
Konstantinos Petidis ◽  
Konstantinos Markakis ◽  
Ioanna Zografou ◽  
...  

Background. Elevated blood pressure (BP) in the acute phase of ischemic stroke is associated with heightened risk of early disability and death. However, whether BP-lowering in this setting is beneficial and the exact levels at which BP should be targeted remain unclear. This study aimed to evaluate the effect of nebivolol, olmesartan, and no-treatment on 24-hour BP in patients with hypertension during the acute poststroke period. Methods. In a single-blind fashion, 60 patients with acute ischemic stroke and clinic systolic BP (SBP) 160–220 mmHg were randomized to nebivolol (5 mg/day), olmesartan (20 mg/day), or no-treatment between Day 4 and Day 7 of stroke onset. BP-lowering efficacy was assessed through 24-hour BP monitoring using the Mobil-O-Graph device (IEM, Germany). Results. Between baseline and Day 7, significant reductions in 24-hour brachial SBP were noted with nebivolol and olmesartan, but not with no-treatment. Change from baseline (CFB) in 24-hour brachial SBP was not different between nebivolol and olmesartan groups (between-group difference: −3.4 mmHg; 95% confidence interval (CI): −11.2, 4.3), whereas nebivolol was superior to no-treatment in lowering 24-hour brachial SBP (between-group difference: −7.8 mmHg; 95% CI: −7.8 mmHg; 95% CI: −15.6, −0.1). Similarly, nebivolol and olmesartan equally lowered 24-hour aortic SBP (between-group difference: −1.9 mmHg; 95% CI: −10.1, 6.2). Nebivolol and olmesartan provoked similar reductions in 24-hour heart rate-adjusted augmentation index and pulse wave velocity. Conclusion. This study suggests that during the acute phase of ischemic stroke, nebivolol is equally effective with olmesartan in improving 24-hour aortic pressure and arterial stiffness indices. ClinicalTrials.gov identifier number: NCT03655964.


2004 ◽  
Vol 287 (3) ◽  
pp. H1262-H1268 ◽  
Author(s):  
Brian A. Mullan ◽  
Ciaran N. Ennis ◽  
Howard J. P. Fee ◽  
Ian S. Young ◽  
David R. McCance

Mortality increases when acute coronary syndromes are complicated by stress-induced hyperglycemia. Early pulse wave reflection can augment central aortic systolic blood pressure and increase left ventricular strain. Altered pulse wave reflection may contribute to the increase in cardiac risk during acute hyperglycemia. Chronic ascorbic acid (AA) supplementation has recently been shown to reduce pulse wave reflection in diabetes. We investigated the in vivo effects of acute hyperglycemia, with and without AA pretreatment, on pulse wave reflection and arterial hemodynamics. Healthy male volunteers were studied. Peripheral blood pressure (BP) was measured at the brachial artery, and the SphygmoCor pulse wave analysis system was used to derive central BP, the aortic augmentation index (AIx; measure of systemic arterial stiffness), and the time to pulse wave refection ( Tr; measure of aortic distensibility) from noninvasively obtained radial artery pulse pressure (PP) waveforms. Hemodynamics were recorded at baseline and then every 30 min during a 120-min systemic hyperglycemic clamp (14 mmol/l). The subjects, studied on two separate occasions, were randomized in a double-blind, crossover manner to placebo or 2 g intravenous AA before the initiation of hyperglycemia. During hyperglycemia, AIx increased and Tr decreased. Hyperglycemia did not change peripheral PP but did magnify central aortic PP and diminished the normal physiological amplification of PP from the aorta to the periphery. Pulse wave reflection, as assessed from peripheral pulse wave analysis, is enhanced during acute hyperglycemia. Pretreatment with AA prevented the hyperglycemia-induced hemodynamic changes. By protecting hemodynamics during acute hyperglycemia, AA may have therapeutic use.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sergey N. Tolstov ◽  
Igor A. Salov ◽  
Anton R. Kiselev ◽  
Andrey P. Rebrov

Abstract Introduction Structural and functional changes of the vascular wall in women occur already at the very early stages of reproductive aging. An emergence of applanation tonometry made it possible to evaluate arterial stiffness and central hemodynamic parameters non-invasively, which considerably expanded the information that had been provided previously by invasive methods used for studying these parameters during cardiac catheterization. Whereas a few studies have assessed central aortic pressure (CAP) parameters and reflected pulse wave in women at different phases of their reproductive aging, none investigated the daily profile of CAP and reflected pulse wave parameters in women undergoing different stages of the menopause. Background: assessment of the daily variability in CAP and daily profile of amplification and augmentation of pulse blood pressure (PBP) in women at different menopause phases. Methods The study involved 384 climacteric women. The first group included 168 women undergoing perimenopause, the second group comprised of 216 women in their early postmenopausal stage. A 24-h blood pressure (BP) monitoring in the brachial artery and aorta (BPLab® Vasotens® system, Petr Telegin LLC, Russia) was performed via the measurements of the following indicators: systolic blood pressure (SBP), pulse blood pressure (PBP), central aortic systolic pressure (CASP), central aortic pulse pressure (CAPP), aortic augmentation index (AIxao), and pulse pressure amplification (PPA). Results When investigating PPA values in the brachial artery and aorta, we detected smaller amplification and higher aortic augmentation index at night than in daytime, which reflected a disproportionately higher CAP level during night hours. This pattern was more pronounced in postmenopausal women. We calculated the logistic regression equation (adjusted R2 = 0.49, log-likelihood = − 50.3, chi-square (19) = 97.6, p < 0.001), in which dependent variable was represented by the menopausal status, whereas body mass index with all indicators of a 24-h BP monitoring represented independent variables. In this model, two indicators (body mass index and AIxao) were, independently of each other, associated significantly with the menopause phases. Differences among women at various climacteric phases in terms of remaining indicators of a 24-h BP monitoring, apparently, matched the differences in their body mass index values. Conclusion Rising CAP, in combination with declining PPA and augmenting reflected pulse wave amplitude, may be associated with an increased risk of cardiovascular complications.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Yoshiyuki Okada ◽  
Kazushige Isono ◽  
Yudai Higuchi ◽  
Tatsuhisa Mitsui ◽  
Kota Miyahara ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Sabrina Köchli ◽  
Arne Deiseroth ◽  
Christoph Hauser ◽  
Lukas Streese ◽  
Arno Schmidt-Trucksäss ◽  
...  

Objective: Central hemodynamics are related to cardiovascular (CV) outcomes in adults, but associations with childhood CV risk remain unclear. The study aimed to investigate the association of obesity, physical activity, and fitness with parameters of central pulse wave reflection in young prepubertal children.Methods: In this cross-sectional study, 1,324 primary school children (aged 7.2 ± 0.4 years) were screened for parameters of pulse wave reflection such as augmentation index (AIx), central pulse pressure (CPP), body mass index (BMI), and cardiorespiratory fitness (CRF) by standardized procedures for children.Results: The mean AIx and AIx@75 were 22.2 ± 7.7 and 29.2 ± 9.2%, respectively. With each unit increase in BMI, AIx [−0.226 (−0.328; −0.125)%] and AIx@75 [−0.444(−0.660; −0.229)%] decreased, whereas peak forward pulse wave increased (p &lt; 0.001). Increasing BMI was associated with higher CPP, but did not remain significant after adjustment for CRF and heart rate. One unit increase in CRF was associated with lower AIx@75 [−0.509(−0.844; −0.173)%, p = 0.003] and lower reflection magnitude [RM: −0.559 (−0.890; −0.227), p = 0.001], independent of body weight and height. Girls had significantly higher AIx, AIx@75, peak backward pulse wave, and RM compared with boys.Conclusion: Childhood obesity was associated with higher CPP but lower augmentation of the reflected pulse wave in children. Assessment of central blood pressures appears to be a valuable asset to childhood CV risk screening. The validity of augmentation indices during childhood development and the association with early vascular aging in children need to be verified in long-term follow-up studies. Physical activity and fitness have the potential to improve vascular hemodynamics in susceptible children and, thus, counteract vascular aging.Trial registry: ClinicalTrials.gov: Exercise and Arterial Modulation in Youth. Identifier: NCT02853747; URL: https://clinicaltrials.gov/ct2/show/NCT02853747.


2008 ◽  
Vol 104 (2) ◽  
pp. 439-445 ◽  
Author(s):  
David G. Edwards ◽  
Corey R. Mastin ◽  
Robert W. Kenefick

We determined the effects of static and dynamic muscle contraction at equivalent workloads on central aortic pressure and wave reflection. At random, 14 healthy men and women (23 ± 5 yr of age) performed a static handgrip forearm contraction [90 s at 30% of maximal voluntary contraction (MVC)], dynamic handgrip contractions (1 contraction/s for 180 s at 30% MVC), and a control trial. During static and dynamic trials, tension-time index was controlled by holding peak tension constant. Measurements of brachial artery blood pressure and the synthesis of a central aortic pressure waveform (by radial artery applanation tonometry and generalized transfer function) were conducted at baseline, during each trial, and during 1 min of postexercise ischemia (PEI). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. AI increased during both static and dynamic trials (static, 5.2 ± 3.1 to 11.8 ± 3.4%; dynamic, 5.8 ± 3.0 to 13.3 ± 3.4%; P < 0.05) and further increased during PEI (static, 18.5 ± 3.1%; dynamic, 18.6 ± 2.9%; P < 0.05). Peripheral and central systolic and diastolic pressures increased ( P < 0.05) during both static and dynamic trials and remained elevated during PEI. AI and pressure responses did not differ between static and dynamic trials. Peripheral and central pressures increased similarly during static and dynamic contraction; however, the rise in central systolic pressure during both conditions was augmented by increased wave reflection. The present data suggest that wave reflection is an important determinant of the central blood pressure response during forearm muscle contractions.


Sign in / Sign up

Export Citation Format

Share Document