scholarly journals Understanding exercise-induced hyperemia: central and peripheral hemodynamic responses to passive limb movement in heart transplant recipients

2010 ◽  
Vol 299 (5) ◽  
pp. H1653-H1659 ◽  
Author(s):  
Melissa A. Hayman ◽  
Jose N. Nativi ◽  
Josef Stehlik ◽  
John McDaniel ◽  
Anette S. Fjeldstad ◽  
...  

To better characterize the contribution of both central and peripheral mechanisms to passive limb movement-induced hyperemia, we studied nine recent (<2 yr) heart transplant (HTx) recipients (56 ± 4 yr) and nine healthy controls (58 ± 5 yr). Measurements of heart rate (HR), stroke volume (SV), cardiac output (CO), and femoral artery blood flow were recorded during passive knee extension. Peripheral vascular function was assessed using brachial artery flow-mediated dilation (FMD). During passive limb movement, the HTx recipients lacked an HR response (0 ± 0 beats/min, Δ0%) but displayed a significant increase in CO (0.4 ± 0.1 l/min, Δ5%) although attenuated compared with controls (1.0 ± 0.2 l/min, Δ18%). Therefore, the rise in CO in the HTx recipients was solely dependent on increased SV (5 ± 1 ml, Δ5%) in contrast with the controls who displayed significant increases in both HR (6 ± 2 beats/min, Δ11%) and SV (5 ± 2 ml, Δ7%). The transient increase in femoral blood volume entering the leg during the first 40 s of passive movement was attenuated in the HTx recipients (24 ± 8 ml) compared with controls (93 ± 7 ml), whereas peripheral vascular function (FMD) appeared similar between HTx recipients (8 ± 2%) and controls (6 ± 1%). These data reveal that the absence of an HR increase in HTx recipients significantly impacts the peripheral vascular response to passive movement in this population and supports the concept that an increase in CO is a major contributor to exercise-induced hyperemia.

2017 ◽  
Vol 123 (6) ◽  
pp. 1708-1720 ◽  
Author(s):  
Jayson R. Gifford ◽  
Russell S. Richardson

As dysfunction of the vascular system is an early, modifiable step in the progression of many cardiovascular diseases, there is demand for methods to monitor the health of the vascular system noninvasively in clinical and research settings. Validated by very good agreement with more technical assessments of vascular function, like intra-arterial drug infusions and flow-mediated dilation, the passive leg movement (PLM) technique has emerged as a powerful, yet relatively simple, test of peripheral vascular function. In the PLM technique, the change in leg blood flow elicited by the passive movement of the leg through a 90° range of motion is quantified with Doppler ultrasound. This relatively easy-to-learn test has proven to be ≤80% dependent on nitric oxide bioavailability and is especially adept at determining peripheral vascular function across the spectrum of cardiovascular health. Indeed, multiple reports have documented that individuals with decreased cardiovascular health such as the elderly and those with heart failure tend to exhibit a substantially blunted PLM-induced hyperemic response (~50 and ~85% reduction, respectively) compared with populations with good cardiovascular health such as young individuals. As specific guidelines have not yet been put forth, the purpose of this Cores of Reproducibility in Physiology (CORP) article is to provide a comprehensive reference for the assessment and interpretation of vascular function with PLM with the aim to increase reproducibility and consistency among studies and facilitate the use of PLM as a research tool with clinical relevance.


2010 ◽  
Vol 299 (5) ◽  
pp. H1693-H1700 ◽  
Author(s):  
Joel D. Trinity ◽  
Markus Amann ◽  
John McDaniel ◽  
Anette S. Fjeldstad ◽  
Zachary Barrett-O'Keefe ◽  
...  

The purpose of this investigation was to partially remove feedback from type III/IV skeletal muscle afferents and determine how this feedback influences the central and peripheral hemodynamic responses to passive leg movement. Heart rate (HR), stroke volume (SV), cardiac output (CO), mean arterial pressure, leg vascular conductance (LVC), and leg blood flow (LBF) were measured during 2 min of passive knee extension in eight young men before and after intrathecal fentanyl injection. Passive movement increased HR by 14 beats/min from baseline to maximal response during control (CON) (65 ± 4 to 79 ± 5 beats/min, P < 0.05), whereas HR did not significantly increase with the fentanyl block (BLK). LBF and LVC increased in both conditions; however, these increases were attenuated and delayed during BLK [%change from baseline to maximum, LBF: CON 295 ± 109 vs. BLK 210 ± 86%, ( P < 0.05); LVC: CON 322 ± 40% vs. BLK 231 ± 32%, ( P < 0.04)]. In CON, HR, SV, CO, and LVC increased contributing to the hyperemic response. However, under BLK conditions, statistically insignificant increases in HR and SV combined to yield a small, but significant, increase in CO and an attenuated hyperemic response. Therefore, partially blocking skeletal muscle afferent feedback blunts the central hemodynamic response due to passive limb movement, which then results in an attenuated and delayed movement-induced hyperemia. In combination, these findings provide evidence that limb movement-induced hyperemia has a significant central hemodynamic component induced by peripheral nerve activation.


2010 ◽  
Vol 42 ◽  
pp. 53-54
Author(s):  
Melissa A. Hayman ◽  
Jose Nativi ◽  
Josef Stehlik ◽  
John McDaniel ◽  
Anette S. Fjeldstad ◽  
...  

2019 ◽  
Vol 127 (3) ◽  
pp. 753-759 ◽  
Author(s):  
Katharine D. Currie ◽  
Zion Sasson ◽  
Jack M. Goodman

This study sought to examine whether cardiovascular performance during exercise, assessed using the vascular-ventricular coupling index (VVC), was affected by exaggerated blood pressure (EBP) responses in endurance-trained athletes. Subjects were middle-aged endurance-trained men and women. Blood pressure measurements and left ventricular echocardiography were performed in a semiupright position at rest and during steady-state cycling at workloads that elicited 100–110 beats/min ( stage 1) and 130–140 beats/min ( stage 2). These data were used to calculate effective arterial elastance index ( EaI), left ventricular end-systolic elastance index ( ELVI), and their ratio (VVC). Additional measurements of left ventricular volumes and function (i.e., stroke volume, cardiac output, and longitudinal strain) and indirect assessments of peripheral vascular function (i.e., total arterial compliance and peripheral vascular resistance) were examined. Fourteen subjects with EBP (EBP+, 50% men) and 14 sex-matched subjects without EBP (EBP−) participated, with results presented as EBP+ versus EBP−. EaI and ELVI increased from rest to exercise while VVC decreased, but only ELVI was different between groups at stage 1 [7.6 (1.8) vs. 6.4 (1.0) mmHg·ml−1·m−2, P = 0.045] and stage 2 [10.3 (1.6) vs. 8.0 (1.7) mmHg·ml−1·m−2, P < 0.001]. Additional comparisons revealed no group difference in the contribution of the Frank-Starling mechanism or left ventricular and peripheral vascular function during exercise. The cardiovascular adjustment to exercise in athletes with EBP is achieved through a matched increase in both EaI and ELVI, and the absence of between-group differences in left ventricular or peripheral vascular function suggests that other factors may contribute to the EBP response. NEW & NOTEWORTHY Cardiovascular performance during submaximal exercise, assessed using vascular-ventricular coupling, is unaffected by exaggerated blood pressure (EBP) responses in endurance-trained athletes. The underlying mechanisms of EBP in athletes remain unknown as changes in left ventricular and peripheral vascular function during exercise were similar in athletes with and without EBP.


2005 ◽  
Vol 57 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Sunita Mathur ◽  
Donna L. MacIntyre ◽  
Bruce B. Forster ◽  
W. Darlene Reid

2011 ◽  
Vol 29 ◽  
pp. e197
Author(s):  
T. Kuznetsova ◽  
G. Szczesny ◽  
L. Thijs ◽  
D. Jozeau ◽  
J. Dhooge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document