scholarly journals Nitroxyl donors retain their depressor effects in hypertension

2013 ◽  
Vol 305 (6) ◽  
pp. H939-H945 ◽  
Author(s):  
Jennifer C. Irvine ◽  
Ravina M. Ravi ◽  
Barbara K. Kemp-Harper ◽  
Robert E. Widdop

Nitroxyl (HNO), the redox congener of nitric oxide, has numerous vasoprotective actions including an ability to induce vasodilation and inhibit platelet aggregation. Given HNO is resistant to scavenging by superoxide and does not develop tolerance, we hypothesised that HNO would retain its in vivo vasodilatory action in the setting of hypertension. The in vitro and in vivo vasodilator properties of the HNO donors Angeli's salt (AS) and isopropylamine/NONOate (IPA/NO) were compared with the NO˙ donor diethylamine/NONOate (DEA/NO) in spontaneously hypertensive rats (SHR) and normotensive [Wistar-Kyoto (WKY) rats]. AS (10, 50, and 200 μg/kg), IPA/NO (10, 50, and 200 μg/kg), and DEA/NO (1, 5, and 20 μg/kg) caused dose-dependent depressor responses in conscious WKY rats of similar magnitude. Depressor responses to AS and IPA/NO were significantly attenuated ( P < 0.01) after infusion of the HNO scavenger N-acetyl-l-cysteine (NAC), confirming that AS and IPA/NO function as HNO donors in vivo. In contrast, responses to DEA/NO were unchanged following NAC infusion. Depressor responses to AS and IPA/NO in conscious SHR retained their sensitivity to the inhibitory effects of NAC ( P < 0.01), yet those to DEA/NO in SHR were significantly ( P < 0.05) enhanced following NAC infusion. Importantly, depressor responses to AS, IPA/NO, and DEA/NO were preserved in hypertension and vasorelaxation to AS and DEA/NO, in isolated aorta, unchanged in SHR as compared with WKY rats. This study has shown for the first time that HNO donors exert antihypertensive effects in vivo and may, therefore, offer a therapeutic alternative to traditional nitrovasodilators in the treatment of cardiovascular disorders such as hypertension.

1981 ◽  
Vol 241 (4) ◽  
pp. G344-G347 ◽  
Author(s):  
M. A. Toraason ◽  
G. L. Wright

The absorption of calcium by segments of duodenum obtained from spontaneously hypertensive (SH) rats and normotensive Wistar-Kyoto (WKy) rats was measured before and after the development of hypertension. The systolic blood pressure (SBP) of 5-wk-old SH rats (116 +/- 4 Torr) was significantly elevated above that of age-matched WKy rats (103 +/- 3 Torr) but was not at a level generally considered to be hypertensive. Values obtained for calcium transport [ratio of serosal-to-mucosal fluid 45Ca2+ concn (S/M ratio)] from everted duodenal sacs were similar between the two groups at this age. At 12 wk of age, SH rats exhibited a SBP (153 +/- 4 Torr) well above that of WKy controls (127 +/- 3 Torr), and calcium S/M ratios for duodenal sacs were significantly greater than the WKy control values. Similarly, the in vivo uptake of calcium in duodenal segments was significantly elevated in 12-wk-old SH rats compared with WKy controls. The administration of vitamin D3 or its metabolite, 25-hydroxycholecalciferol, had no detectable effect on duodenal transport of calcium in 12-wk-old SH or WKy rats. By comparison, 1,25-dihydroxycholecalciferol produced a significant increase in duodenal calcium transport both in vitro and in vivo in WKy but not in SH rats. The results indicate a distinct abnormality in the transport of calcium in the duodenum of SH rats, suggesting that the decrease in duodenal uptake of calcium that normally occurs with maturation is slow to develop in this rat strain.


1998 ◽  
Vol 275 (4) ◽  
pp. R1366-R1373 ◽  
Author(s):  
Katarina Persson ◽  
Raj K. Pandita ◽  
John M. Spitsbergen ◽  
William D. Steers ◽  
Jeremy B. Tuttle ◽  
...  

The influence of noradrenergic mechanisms involved in micturition in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats was investigated using continuous cystometry in in vivo and in vitro studies on isolated bladder and urethral tissues. Compared with WKY rats, SHR had a significantly lower bladder capacity (SHR: 0.7 ± 0.05 ml; WKY rats: 1.3 ± 0.06 ml; P < 0.001), micturition volume (SHR: 0.4 ± 0.04 ml, WKY rats: 1.2 ± 0.05 ml; P < 0.001), and an increased amplitude of nonvoiding (unstable) bladder contractions. The effects of intrathecal and intra-arterial doxazosin on cystometric parameters were more pronounced in SHR than in WKY rats. There was a marked reduction in nonvoiding contractions after intrathecal (but not intra-arterial) doxazosin in SHR. Norepinephrine (0.1 μM–1 mM) failed to evoke contractions in bladder strips from WKY rats, in contrast to a weak contractile response in SHR. The response to electrical field stimulation was significantly less in bladder strips from SHR than from WKY rats. In WKY rats, norepinephrine produced concentration-dependent inhibition (87 ± 5%, n = 6) of nerve-evoked bladder contractions. Almost no inhibition (11 ± 8%, n = 6) was found in SHR. Alterations in bladder function of SHR appear to be associated with changes in the noradrenergic control of the micturition reflex, in addition to an increased smooth muscle and decreased neuronal responsiveness to norepinephrine. The marked reduction in nonvoiding contractions after intrathecal doxazosin suggests that the bladder hyperactivity in SHR has at least part of its origin in supraspinal and/or spinal structures.


2008 ◽  
Vol 294 (6) ◽  
pp. H2614-H2618 ◽  
Author(s):  
Jewell A. Jessup ◽  
Aaron J. Trask ◽  
Mark C. Chappell ◽  
Sayaka Nagata ◽  
Johji Kato ◽  
...  

A low expression of angiotensinogen in the heart has been construed as indicating a circulating uptake mechanism to explain the local effects of angiotensin II on tissues. The recent identification of angiotensin-(1-12) in an array of rat organs suggests this propeptide may be an alternate substrate for local angiotensin production. To test this hypothesis, tissues from 11-wk-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats ( n = 14) were stained with purified antibodies directed to the COOH terminus of angiotensin-(1-12). Robust angiotensin-(1-12) staining was predominantly found in ventricular myocytes with less staining found in the medial layer of intracoronary arteries and vascular endothelium. In addition, angiotensin-(1-12) immunoreactivity was present in the proximal, distal, and collecting renal tubules within the deep cortical and outer medullary zones in both strains. Preadsorption of the antibody with angiotensin-(1-12) abolished staining in both tissues. Corresponding tissue measurements by radioimmunoassay showed 47% higher levels of angiotensin-(1-12) in the heart of SHR compared with WKY rats ( P < 0.05). In contrast, renal angiotensin-(1-12) levels were 16.5% lower in SHR compared with the WKY rats ( P < 0.05). This study shows for first time the localization of angiotensin-(1-12) in both cardiac myocytes and renal tubular components of WKY and SHR. In addition, we show that increased cardiac angiotensin-(1-12) concentrations in SHR is associated with a small, but statistically significant, reduction in renal angiotensin-(1-12) levels.


1986 ◽  
Vol 250 (4) ◽  
pp. G412-G419
Author(s):  
H. P. Schedl ◽  
D. L. Miller ◽  
R. L. Horst ◽  
H. D. Wilson ◽  
K. Natarajan ◽  
...  

We previously found intestinal Ca2+ transport to be lower in the spontaneously hypertensive (SH) as compared with the Wistar-Kyoto control (WKY) rat. These animals were fed a relatively high (1%) Ca2+ diet, and the concentration of 1 alpha,25-dihydroxycholecalciferol [1 alpha,25(OH)2D3] in serum was the same in both groups. In the present experiment we tested the possibility that the lower Ca2+ transport in the SH rat was the result of unresponsiveness to 1 alpha,25(OH)2D3. We fed diets high and low in Ca2+ and measured serum 1 alpha,25(OH)2D3 and Ca2+ transport. Serum 1 alpha,25(OH)2D3 increased in response to Ca2+ depletion at both 5 and 12 wk in both the WKY and SH rat. With high-Ca2+ diet, Ca2+ transport was lower in SH than in WKY when studied 1) in vitro in duodenum at 5 wk of age, and 2) in vivo in proximal and distal small intestine at 12 wk of age. Ca2+ transport increased in SH in response to Ca2+ depletion, but not in WKY, except in distal small intestine in vivo at 12 wk. In summary, although Ca2+ transport is lower in the SH as compared with the WKY rat when vitamin D activity is basal through feeding a high-Ca2+ diet, Ca2+ transport increases in the SH rat in response to the increase in 1 alpha,25(OH)2D3 produced by feeding a low-Ca2+ diet. We conclude that 1) the vitamin D-regulated component of mediated Ca2+ transport is intact in the SH rat and is unrelated to hypertension, and 2) mediated Ca2+ transport under basal conditions, i.e., nonvitamin D-regulated, differs in the SH and WKY rats and may be related to hypertension.


2016 ◽  
Vol 120 (10) ◽  
pp. 1141-1150 ◽  
Author(s):  
Steven G. Denniss ◽  
Rebecca J. Ford ◽  
Christopher S. Smith ◽  
Andrew J. Jeffery ◽  
James W. E. Rush

Exaggerated cyclooxygenase (COX) and thromboxane-prostanoid (TP) receptor-mediated endothelium-dependent contraction can contribute to endothelial dysfunction. This study examined the effect of resveratrol (RSV) on endothelium-dependent contraction and cell signaling in the common carotid artery (CCA) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Acetylcholine (Ach)-stimulated endothelium-dependent nitric oxide synthase (NOS)-mediated relaxation in precontracted SHR CCA was impaired (maximum 73 ± 6% vs. 87 ± 5% in WKY) ( P < 0.05) by competitive COX-mediated contraction. Chronic (28-day) treatment in vivo (drinking water) with a ∼0.075 mg·kg−1·day−1 RSV dose affected neither endothelium-dependent relaxation nor endothelium-dependent contraction and associated prostaglandin (PG) production evaluated in non-precontracted NOS-blocked CCA. In contrast, a chronic ∼7.5 mg·kg−1·day−1 RSV dose improved endothelium-dependent relaxation (94 ± 6%) and attenuated endothelium-dependent contraction (58 ± 4% vs. 73 ± 5% in No-RSV) and PG production (183 ± 43 vs. 519 ± 93 pg/ml) in SHR CCA, while U46619-stimulated TP receptor-mediated contraction was unaffected. In separate acute in vitro experiments, 20-μM RSV preincubation attenuated endothelium-dependent contraction (6 ± 4% vs. 62 ± 2% in No Drug) and PG production (121 ± 15 vs. 491 ± 93 pg/ml) and attenuated U46619-stimulated contraction (134 ± 5% vs. 171 ± 4%) in non-precontracted NOS-blocked SHR CCA. Compound C, a known AMP-activated protein kinase (AMPK) inhibitor, did not prevent the RSV attenuating effect on Ach- and U46619 -stimulated contraction but did prevent the RSV attenuating effect on PG production (414 ± 58 pg/ml). These data demonstrate that RSV can attenuate endothelium-dependent contraction both by suppressing arterial wall PG production, which may be partially mediated by AMPK, and by TP receptor hyporesponsiveness, which does not appear to be mediated by AMPK.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246254
Author(s):  
Lucía Isidoro-García ◽  
Diva M. Villalpando ◽  
Mercedes Ferrer

Androgens may exert cardiovascular protective actions by regulating the release and function of different vascular factors. In addition, testosterone (TES) and its 5-reduced metabolites, 5α- and 5β-dihydrotestosterone (5α- and 5β-DHT) induce vasorelaxant and hypotensive effects. Furthermore, hypertension has been reported to alter the release and function of the neurotransmitters nitric oxide (NO), calcitonin gene-related peptide (CGRP) and noradrenaline (NA). Since the mesenteric arteries possess a dense perivascular innervation and significantly regulate total peripheral vascular resistance, the objective of this study was to analyze the effect of TES, 5α- and 5β-DHT on the neurogenic release and vasomotor function of NO, CGRP and NA. For this purpose, the superior mesenteric artery from male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats was used to analyze: (i) the effect of androgens (10 nM, incubated for 30 min) on the neurogenic release of NO, CGRP and NA and (ii) the vasoconstrictor-response to NA and the vasodilator responses to the NO donor, sodium nitroprusside (SNP) and exogenous CGRP. The results showed that TES, 5α- or 5β-DHT did not modify the release of NO, CGRP or NA induced by electrical field stimulation (EFS) in the arteries of SHR; however, in the arteries of WKY rats androgens only caused an increase in EFS-induced NO release. Moreover, TES, and especially 5β-DHT, increased the vasodilator response induced by SNP and CGRP in the arteries of SHR. These findings could be contributing to the hypotensive/antihypertensive efficacy of 5β-DHT previously described in conscious SHR and WKY rats, pointing to 5β- DHT as a potential drug for the treatment of hypertension.


1990 ◽  
Vol 125 (3) ◽  
pp. 359-364 ◽  
Author(s):  
E. Aguilar ◽  
M. L. Rodríguez-Padilla ◽  
L. Pinilla

ABSTRACT Prolactin has been involved in different types of hypertension both in man and in rats. In an attempt to substantiate this hypothesis, we have analysed the correlation between plasma concentrations of prolactin and systolic blood pressure (SBP) in female and male rats from spontaneously hypertensive (SH) and normotensive Wistar–Kyoto strains (30, 60 and 90 days old), as well as in adult female Wistar rats rendered hyperprolactinaemic by the administration of 100 μg testosterone propionate on day 1 of life, or adult males with low plasma concentrations of prolactin after administration of bromocriptine (4 mg/kg per day) over 15 days. Our results indicate a lack of correlation between plasma concentrations of prolactin and SBP since plasma concentrations of prolactin were normal in male and female SH rats and hyper- and hypoprolactinaemia did not affect SBP. In spite of these normal plasma concentrations of prolactin, SH rats showed subtle changes in the secretion of this hormone in vitro and in vivo in response to exogenous serotonin administration and to immobilization. Journal of Endocrinology (1990) 125, 359–364


Sign in / Sign up

Export Citation Format

Share Document