scholarly journals Increased thin filament activation enhances alternans in human chronic atrial fibrillation

2018 ◽  
Vol 315 (5) ◽  
pp. H1453-H1462 ◽  
Author(s):  
Melanie A. Zile ◽  
Natalia A. Trayanova

Action potential duration (APD) alternans (APD-ALT), defined as beat-to-beat oscillations in APD, has been proposed as an important clinical marker for chronic atrial fibrillation (cAF) risk when it occurs at pacing rates of 120–200 beats/min. Although the ionic mechanisms for occurrence of APD-ALT in human cAF at these clinically relevant rates have been investigated, little is known about the effects of myofilament protein kinetics on APD-ALT. Therefore, we used computer simulations of single cell function to explore whether remodeling in myofilament protein kinetics in human cAF alters the occurrence of APD-ALT and to uncover how these mechanisms are affected by sarcomere length and the degree of cAF-induced myofilament remodeling. Mechanistically based, bidirectionally coupled electromechanical models of human right and left atrial myocytes were constructed, incorporating both ionic and myofilament remodeling associated with cAF. By comparing results from our electromechanical model with those from the uncoupled ionic model, we found that intracellular Ca2+ concentration buffering of troponin C has a dampening effect on the magnitude of APD-ALT (APD-ANM) at slower rates (150 beats/min) due to the cooperativity between strongly bound cross-bridges and Ca2+-troponin C binding affinity. We also discovered that cAF-induced enhanced thin filament activation enhanced APD-ANM at these clinically relevant heart rates (150 beats/min). In addition, longer sarcomere lengths increased APD-ANM, suggesting that atrial stretch is an important modulator of APD-ALT. Together, these findings demonstrate that myofilament kinetics mechanisms play an important role in altering APD-ALT in human cAF. NEW & NOTEWORTHY Using a single cell simulation approach, we explored how myofilament protein kinetics alter the formation of alternans in action potential duration (APD) in human myocytes with chronic atrial fibrillation remodeling. We discovered that enhanced thin filament activation and longer sarcomere lengths increased the magnitude of APD alternans at clinically important pacing rates of 120–200 beats/min. Furthermore, we found that altered intracellular Ca2+ concentration buffering of troponin C has a dampening effect on the magnitude of APD alternans.

2012 ◽  
Vol 97 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Marta González de la Fuente ◽  
Adriana Barana ◽  
Ricardo Gómez ◽  
Irene Amorós ◽  
Pablo Dolz-Gaitón ◽  
...  

2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S120-S120
Author(s):  
L Sartiani ◽  
L Sartiani ◽  
M Cameli ◽  
L Dini ◽  
S Modillo ◽  
...  

2012 ◽  
Vol 302 (6) ◽  
pp. H1294-H1305 ◽  
Author(s):  
Wei Kong ◽  
Raymond E. Ideker ◽  
Vladimir G. Fast

Intramural gradients of intracellular Ca2+ (Cai2+) Cai2+ handling, Cai2+ oscillations, and Cai2+ transient (CaT) alternans may be important in long-duration ventricular fibrillation (LDVF). However, previous studies of Cai2+ handling have been limited to recordings from the heart surface during short-duration ventricular fibrillation. To examine whether abnormalities of intramural Cai2+ handling contribute to LDVF, we measured membrane voltage ( Vm) and Cai2+ during pacing and LDVF in six perfused canine hearts using five eight-fiber optrodes. Measurements were grouped into epicardial, midwall, and endocardial layers. We found that during pacing at 350-ms cycle length, CaT duration was slightly longer (by ≃10%) in endocardial layers than in epicardial layers, whereas action potential duration (APD) exhibited no difference. Rapid pacing at 150-ms cycle length caused alternans in both APD (APD-ALT) and CaT amplitude (CaA-ALT) without significant transmural differences. For 93% of optrode recordings, CaA-ALT was transmurally concordant, whereas APD-ALT was either concordant (36%) or discordant (54%), suggesting that APD-ALT was not caused by CaA-ALT. During LDVF, Vm and Cai2+ progressively desynchronized when not every action potential was followed by a CaT. Such desynchronization developed faster in the epicardium than in the other layers. In addition, CaT duration strongly increased (by ∼240% at 5 min of LDVF), whereas APD shortened (by ∼17%). CaT rises always followed Vm upstrokes during pacing and LDVF. In conclusion, the fact that Vm upstrokes always preceded CaTs indicates that spontaneous Cai2+ oscillations in the working myocardium were not likely the reason for LDVF maintenance. Strong Vm-Cai2+ desynchronization and the occurrence of long CaTs during LDVF indicate severely impaired Cai2+ handling and may potentially contribute to LDVF maintenance.


1991 ◽  
Vol 98 (2) ◽  
pp. 233-248 ◽  
Author(s):  
J M Metzger ◽  
R L Moss

The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.


Author(s):  
Mark D. McCauley ◽  
Liang Hong ◽  
Arvind Sridhar ◽  
Ambili Menon ◽  
Srikanth Perike ◽  
...  

Background: Epidemiological studies have established obesity as an independent risk factor for atrial fibrillation (AF), but the underlying pathophysiological mechanisms remain unclear. Reduced cardiac sodium channel expression is a known causal mechanism in AF. We hypothesized that obesity decreases Nav1.5 expression via enhanced oxidative stress, thus reducing I Na , and enhancing susceptibility to AF. Methods: To elucidate the underlying electrophysiological mechanisms a diet-induced obese mouse model was used. Weight, blood pressure, glucose, F 2 -isoprostanes, NOX2 (NADPH oxidase 2), and PKC (protein kinase C) were measured in obese mice and compared with lean controls. Invasive electrophysiological, immunohistochemistry, Western blotting, and patch clamping of membrane potentials was performed to evaluate the molecular and electrophysiological phenotype of atrial myocytes. Results: Pacing-induced AF in 100% of diet-induced obese mice versus 25% in controls ( P <0.01) with increased AF burden. Cardiac sodium channel expression, I Na and atrial action potential duration were reduced and potassium channel expression (Kv1.5) and current ( I Kur ) and F 2 -isoprostanes, NOX2, and PKC-α/δ expression and atrial fibrosis were significantly increased in diet-induced obese mice as compared with controls. A mitochondrial antioxidant reduced AF burden, restored I Na , I Ca,L , I Kur , action potential duration, and reversed atrial fibrosis in diet-induced obese mice as compared with controls. Conclusions: Inducible AF in obese mice is mediated, in part, by a combined effect of sodium, potassium, and calcium channel remodeling and atrial fibrosis. Mitochondrial antioxidant therapy abrogated the ion channel and structural remodeling and reversed the obesity-induced AF burden. Our findings have important implications for the management of obesity-mediated AF in patients. Graphic Abstract: A graphic abstract is available for this article.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e105897 ◽  
Author(s):  
Carlos Sánchez ◽  
Alfonso Bueno-Orovio ◽  
Erich Wettwer ◽  
Simone Loose ◽  
Jana Simon ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (2) ◽  
pp. 82-92 ◽  
Author(s):  
Constanze Schmidt ◽  
Felix Wiedmann ◽  
Niels Voigt ◽  
Xiao-Bo Zhou ◽  
Jordi Heijman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document