Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics

2009 ◽  
Vol 297 (5) ◽  
pp. H1736-H1743 ◽  
Author(s):  
Chikako Nakajima-Takenaka ◽  
Guo-Xing Zhang ◽  
Koji Obata ◽  
Kiyoe Tohne ◽  
Hiroko Matsuyoshi ◽  
...  

We investigated left ventricular (LV) mechanical work and energetics in the cross-circulated (blood-perfused) isoproterenol [Iso 1.2 mg·kg−1·day−1 for 3 days (Iso3) or 7 days (Iso7)]-induced hypertrophied rat heart preparation under isovolumic contraction-relaxation. We evaluated pressure-time curves per beat, end-systolic pressure-volume and end-diastolic pressure-volume relations, and myocardial O2 consumption per beat (V̇o2)-systolic pressure-volume area (PVA; a total mechanical energy per beat) linear relations at 240 beats/min, because Iso-induced hypertrophied hearts failed to completely relax at 300 beats/min. The LV relaxation rate at 240 beats/min in Iso-induced hypertrophied hearts was significantly slower than that in control hearts [saline 24 μl/day for 3 and 7 days (Sa)] with unchanged contraction rate. The V̇o2-intercepts (composed of basal metabolism and Ca2+ cycling energy consumption in excitation-contraction coupling) of V̇o2-PVA linear relations were unchanged associated with their unchanged slopes in Sa, Iso3, and Iso7 groups. The oxygen costs of LV contractility were also unchanged in all three groups. The amounts of expression of sarcoplasmic reticulum Ca2+-ATPase, phospholamban (PLB), phosphorylated-Ser16 PLB, phospholemman, and Na+-K+-ATPase are significantly decreased in Iso3 and Iso7 groups, although the amount of expression of NCX1 is unchanged in all three groups. Furthermore, the marked collagen production (types I and III) was observed in Iso3 and Iso7 groups. These results suggested the possibility that lowering the heart rate was beneficial to improve mechanical work and energetics in isoproterenol-induced hypertrophied rat hearts, although LV relaxation rate was slower than in normal hearts.

2005 ◽  
Vol 288 (4) ◽  
pp. H1699-H1707 ◽  
Author(s):  
Hiroji Hagihara ◽  
Yoshiro Yoshikawa ◽  
Yoshimi Ohga ◽  
Chikako Takenaka ◽  
Ken-ya Murata ◽  
...  

We have recently reported that exposure of rat hearts to high Ca2+ produces a Ca2+ overload-induced contractile failure in rat hearts, which was associated with proteolysis of α-fodrin. We hypothesized that contractile failure after ischemia-reperfusion (I/R) is similar to that after high Ca2+ infusion. To test this hypothesis, we investigated left ventricular (LV) mechanical work and energetics in the cross-circulated rat hearts, which were subjected to 15 min global ischemia and 60 min reperfusion. Sixty minutes after I/R, mean systolic pressure-volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) (PVAmLVV) was significantly decreased from 5.89 ± 1.55 to 3.83 ± 1.16 mmHg·ml·beat−1·g−1 ( n = 6). Mean myocardial oxygen consumption per beat (Vo2) intercept of (Vo2-PVA linear relation was significantly decreased from 0.21 ± 0.05 to 0.15 ± 0.03 μl O2·beat−1·g−1 without change in its slope. Initial 30-min reperfusion with a Na+/Ca2+ exchanger (NCX) inhibitor KB-R7943 (KBR; 10 μmol/l) significantly reduced the decrease in mean PVAmLVV and Vo2 intercept ( n = 6). Although Vo2 for the Ca2+ handling was finally decreased, it transiently but significantly increased from the control for 10–15 min after I/R. This increase in Vo2 for the Ca2+ handling was completely blocked by KBR, suggesting an inhibition of reverse-mode NCX by KBR. α-Fodrin proteolysis, which was significantly increased after I/R, was also significantly reduced by KBR. Our study shows that the contractile failure after I/R is similar to that after high Ca2+ infusion, although the contribution of reverse-mode NCX to the contractile failure is different. An inhibition of reverse-mode NCX during initial reperfusion protects the heart against reperfusion injury.


1988 ◽  
Vol 254 (1) ◽  
pp. H34-H44 ◽  
Author(s):  
H. Suga ◽  
Y. Goto ◽  
Y. Yasumura ◽  
T. Nozawa ◽  
S. Futaki ◽  
...  

We compared left ventricular oxygen consumptions (VO2) of contractions performing negative external work (EW less than 0) and positive external work (EW greater than 0) that developed comparable peak systolic pressures in the excised cross-circulated dog hearts. We changed the polarity of ventricular work with volume servo-pump and measured both left ventricular VO2 and systolic pressure-volume area (PVA). PVA represents the total mechanical energy generated by contraction and is equal to the area circumscribed by the end-systolic and end-diastolic pressure-volume (PV) relation curves and the systolic PV trajectory. For comparable peak systolic pressures of approximately 90 mmHg, contractions performing negative EW of -834 +/- 327 mmHg.ml.100 g left ventricle-1 had 27 +/- 11% smaller VO2 and 62 +/- 12% smaller PVA than those performing positive EW of 851 +/- 329 mmHg.ml.100 g-1. The smaller VO2 for negative EW could be accounted for by the linear VO2-PVA relation regardless of the polarity and magnitude of work. The results indicate that negative work can save VO2 of contractions to develop a given peak systolic pressure.


2010 ◽  
Vol 299 (2) ◽  
pp. H396-H401 ◽  
Author(s):  
Yoshiro Yoshikawa ◽  
Guo-Xing Zhang ◽  
Koji Obata ◽  
Hiroko Matsuyoshi ◽  
Keiji Asada ◽  
...  

We have previously shown that a newly developed calpain inhibitor, SNJ-1945 (SNJ), with good aqueous solubility prevents the heart from KCl arrest-reperfusion injury associated with the impairment of total Ca2+ handling by inhibiting the proteolysis of α-fodrin as a cardioplegia. The aim of the present study was to investigate certain actions of this calpain inhibitor, SNJ, on left ventricular (LV) mechanical work and energetics in cross-circulated excised rat hearts undergoing blood perfusion with 40 μM SNJ. Mean end-systolic pressure at midrange LV volume and systolic pressure-volume area (PVA) at mLVV (a total mechanical energy/beat) were significantly increased by SNJ perfusion ( P < 0.01). Mean myocardial oxygen consumption per beat (V̇o2) intercepts (V̇o2 for the total Ca2+ handling in excitation-contraction coupling and basal metabolism) of V̇o2-PVA linear relations were significantly increased ( P < 0.01) with unchanged mean slopes of V̇o2-PVA linear relations. Pretreatment with the selective β1-blocker landiolol (10 μM) blocked these effects of SNJ perfusion. There were no significant differences in mean basal metabolic oxygen consumption among normal, 40 μM SNJ, and 10 μM landiolol + 40 μM SNJ groups. Our results indicate that water-soluble SNJ exerted positive actions on mechanical work and energetics mediated via β1-adrenergic receptors associated with the enhancement of total Ca2+ handling in excitation-contraction coupling and with unchanged contractile efficiency. In clinical settings, this pharmacological action of SNJ is beneficial as an additive agent for cardioplegia.


2011 ◽  
Vol 301 (5) ◽  
pp. H2154-H2160 ◽  
Author(s):  
Munetaka Shibata ◽  
Daisuke Takeshita ◽  
Koji Obata ◽  
Shinichi Mitsuyama ◽  
Haruo Ito ◽  
...  

Impaired Ca2+ handling is one of the main characteristics in heart failure patients. Recently, we reported abnormal expressions of Ca2+-handling proteins in isoproterenol (ISO)-induced hypertrophied rat hearts. On the other hand, Na+/H+ exchanger (NHE)-1 inhibitor has been demonstrated to exert beneficial effects in ischemic-reperfusion injury and in the development of cardiac remodeling. The aims of the present study are to investigate the role of NHE-1 on Ca2+ handling and development of cardiac hypertrophy in ISO-infused rats. Male Wistar rats were randomly divided into vehicle [control (CTL)] and ISO groups without or with pretreatment with a selective NHE-1 inhibitor, BIIB-723. ISO infusion for 1 wk significantly increased the ratios of heart to body weight and left ventricle (LV) to body weight and collagen accumulation. All of these increases were antagonized by coadministration with BIIB-723. The ISO-induced significant increase in LV wall thickness was suppressed significantly ( P < 0.05) by BIIB-723. ISO-induced decreases in cardiac stroke volume and a total mechanical energy per beat index, systolic pressure-volume area at midrange LV volume, were normalized by BIIB-723. The markedly higher expression of NHE-1 protein in the ISO group than that in CTL group was suppressed ( P < 0.05) by BIIB-723. Surprisingly, ISO induced downregulation of the important Ca2+-handling protein sarcoplasmic reticulum Ca2+-ATPase 2a, the expression of which was also normalized by BIIB-723 without changes in phosphorylated phospholamban (PLB)/PLB expression. We conclude that NHE-1 contributes to ISO-induced abnormal Ca2+ handling associated with cardiac hypertrophy. Inhibition of NHE-1 ameliorates cardiac Ca2+-handling impairment and prevents the development of cardiac dysfunction in ISO-infused rats.


1997 ◽  
Vol 273 (2) ◽  
pp. H583-H592 ◽  
Author(s):  
S. Yasuda ◽  
T. Shishido ◽  
Y. Goto

The left ventricular (LV) mechanical performance and the LV myocardial oxygen consumption (VO2)-to-pressure-volume area (PVA; LV total mechanical energy index) relationship were measured in isovolumic contraction of isolated blood-perfused dog hearts before and after direct current (DC) countershocks. At a constant LV volume, DC shocks increased LV end-diastolic pressure progressively and strikingly with the progression of myocardial edema and a marked prolongation of the time constant of LV pressure decay. In contrast, DC shocks changed neither the slope of the LV end-systolic pressure-volume relationship nor the contractile efficiency (the slope of the Vo2-PVA relationship). The oxygen cost of contractility (the slope of the relationship between PVA-independent VO2 and LV contractility) increased 27% after DC shocks. However, the magnitude of this change was considerably smaller than that previously reported in postischemic stunned myocardium (123%), suggesting that the adverse effect of DC shocks on the energy cost of excitation-contraction coupling is relatively minor. Thus, despite the severe diastolic dysfunction, DC shocks do not substantially impair either the efficiency of cross-bridge cycling or calcium cycling. Myocardial interstitial edema is more likely a potential mechanism of diastolic dysfunction after DC shocks.


1991 ◽  
Vol 261 (5) ◽  
pp. H1630-H1635
Author(s):  
H. Yaku ◽  
B. K. Slinker ◽  
E. S. Myhre ◽  
M. W. Watkins ◽  
M. M. Lewinter

We evaluated the mechanical and energetic stability of the isolated rabbit heart perfused with a suspension of bovine red cells in Krebs-Henseleit buffer in terms of the pressure-volume area (PVA) concept. PVA, the area surrounded by the end-systolic and end-diastolic pressure-volume (P-V) relations and the systolic P-V trajectory of the P-V diagram, represents the total mechanical energy generated by each cardiac contraction. Myocardial O2 consumption (VO2) per beat has been reported to be highly linearly correlated with PVA. We used the slope and VO2-axis intercept of the VO2-PVA relation as energetic parameters and the maximum P-V ratio (Emax) as a contractility index of the left ventricle (LV) and compared them every 30 min for 120 min. Emax, the slope, and VO2 intercept of the VO2-PVA relation did not change significantly over 120 min compared with their control values [7.3 +/- 2.9 mmHg.ml-1.100 g LV, (1.67 +/- 0.40) x 10(-5) ml O2.mmHg-1.ml-1, and (3.26 +/- 1.01) x 10(-2) ml O2.beat-1.100 g LV-1, respectively]. However, the goodness of the linear fit of the VO2-PVA relation decreased after 90 min (r = 0.94 control, 0.62 at 90 min, and 0.64 at 120 min). Therefore, we conclude that the isolated bovine red cell-perfused rabbit heart preparation is stable for mechanical and energetic studies for at least 60 min.


1997 ◽  
Vol 272 (6) ◽  
pp. H2671-H2678 ◽  
Author(s):  
H. Tachibana ◽  
M. Takaki ◽  
S. Lee ◽  
H. Ito ◽  
H. Yamaguchi ◽  
...  

We recorded a series of ejecting left ventricular (LV) pressure (P)-volume (V) loops of in situ rat hearts during a gradual ascending aortic occlusion. The end-systolic (ES) P-V relationship (ESPVR) was upward convex curvilinear regardless of LV contractility. The ESPVR was shifted upward in an enhanced contractility by dobutamine and downward in a depressed contractility by propranolol; ESP at a midrange V of 0.1 ml/g LV on each ESPVR increased from 131 +/- 11 to 192 +/- 17 mmHg and decreased from 136 +/- 10 to 110 +/- 7 mmHg, respectively. Furthermore, we obtained an upward concave curvilinear pressure-volume area (PVA; a measure of total mechanical energy)-V (preload) relationship to assess LV work capability in each contractility. This relationship also shifted upward in enhanced contractility and downward in depressed contractility; the PVA at midrange V increased from 7.9 +/- 1.2 to 12.3 +/- 1.5 mmHg. ml.beat-1.g-1 and decreased from 8.2 +/- 0.9 to 6.4 +/- 0.8 mmHg.ml.beat-1.g-1. We conclude that the heights of the ESPVR and PVA-V relationship curves can evaluate LV contractility mechanoenergetically.


1983 ◽  
Vol 244 (2) ◽  
pp. H206-H214 ◽  
Author(s):  
H. Suga ◽  
R. Hisano ◽  
S. Hirata ◽  
T. Hayashi ◽  
O. Yamada ◽  
...  

Left ventricular (LV) systolic pressure-volume area (PVA), a new measure of total mechanical energy for the contraction, linearly correlates with its oxygen consumption per beat (VO2) regardless of contraction mode in a canine heart with stable chronotropism and inotropism. PVA is the area in the pressure-volume (PV) diagram circumscribed by the end-systolic and end-diastolic PV relation curves and the systolic segment of the PV loop and has dimensions of energy. We investigated whether primary changes in heart rate would affect the VO2-PVA relation. In the excised cross-circulated canine heart with left ventricular load controlled with a servo pump, we changed heart rate by pacing to compare the VO2-PVA relations at low [124 +/- 17 (SD) min-1] and high (193 +/- 23) heart rates. In 15 left ventricles, VO2 (ml O2 X beat-1 X 100 g LV-1) was (1.75 +/- 0.57) X 10(-5) PVA (mmHg X ml X beat-1 X 100 g LV-1) + 0.031 +/- 0.011 (ml O2 X beat-1 X 100 g LV-1). The VO2-PVA relation was virtually independent of heart rate in individual hearts. We conclude that the load-independent VO2-PVA relationship is not affected by chronotropism in a given canine left ventricle.


1997 ◽  
Vol 87 (3) ◽  
pp. 658-666 ◽  
Author(s):  
Kunihisa Kohno ◽  
Miyako Takaki ◽  
Kazunari Ishioka ◽  
Yasunori Nakayama ◽  
Shunsuke Suzuki ◽  
...  

Background It is still unclear whether fentanyl directly alters left ventricular (LV) contractility and oxygen consumption. This is because of the difficulty in defining and evaluating contractility and energy use independently of ventricular loading conditions and heart rate in beating whole hearts. Methods This study was conducted to clarify the mechanoenergetic effects of intracoronary fentanyl in six excised cross-circulated canine hearts. The authors used the framework of the Emax (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-VO2 (myocardial oxygen consumption per beat) relationship practically independent of ventricular loading conditions. The authors measured LV pressure, volume, coronary flow, and arteriovenous oxygen content difference to calculate Emax, PVA, and VO2. They first obtained the VO2-PVA relationship for varied LV volumes at control Emax. The authors then obtained the VO2-PVA relationship at a constant LV volume, whereas coronary blood fentanyl concentration was increased in steps up to 240 ng/ml. Finally, they obtained the VO2-PVA relationship for varied LV volumes at the final dose of fentanyl. Results Fentanyl at any concentrations did not significantly change Emax, PVA, and VO2 from the control. The linear end-systolic pressure-volume relations and their slopes were virtually the same between the control and fentanyl volume loading in each heart. Further, either the slope (oxygen cost of PVA) or the VO2 intercept (unloaded VO2) of the linear VO2-PVA relationship remained unchanged by fentanyl. Conclusions These results indicate that intracoronary fentanyl produces virtually no effects on LV mechanoenergetics for a wide range of its blood concentration.


1997 ◽  
Vol 86 (6) ◽  
pp. 1350-1358 ◽  
Author(s):  
Kunihisa Kohno ◽  
Miyako Takaki ◽  
Kazunari Ishioka ◽  
Yasunori Nakayama ◽  
Shunsuke Suzuki ◽  
...  

Background It is still unclear whether fentanyl directly alters left ventricular (LV) contractility and oxygen consumption. This is because of the difficulty in defining and evaluating contractility and energy use independently of ventricular loading conditions and heart rate in beating whole hearts. Methods This study was conducted to clarify the mechanoenergetic effects of intracoronary fentanyl in six excised cross-circulated canine hearts. The authors used the framework of the E(max) (a contractility index)-PVA (systolic pressure-volume area, a measure of total mechanical energy)-VO2 (myocardial oxygen consumption per beat) relationship practically independent of ventricular loading conditions. The authors measured LV pressure, volume, coronary flow, and arteriovenous oxygen content difference to calculate E(max), PVA, and VO2. They first obtained the VO2-PVA relationship for varied LV volumes at control E(max). The authors then obtained the VO2-PVA relationship at a constant LV volume, whereas coronary blood fentanyl concentration was increased in steps up to 240 ng/ml. Finally, they obtained the VO2-PVA relationship for varied LV volumes at the final dose of fentanyl. Results Fentanyl at any concentrations did not significantly change E(max), PVA, and VO2 from the control. The linear end-systolic pressure-volume relations and their slopes were virtually the same between the control and fentanyl volume loading in each heart. Further, either the slope (oxygen cost of PVA) or the VO2 intercept (unloaded VO2) of the linear VO2-PVA relationship remained unchanged by fentanyl. Conclusions These results indicate that intracoronary fentanyl produces virtually no effects on LV mechanoenergetics for a wide range of its blood concentration.


Sign in / Sign up

Export Citation Format

Share Document