external work
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 51)

H-INDEX

39
(FIVE YEARS 3)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 93
Author(s):  
Paul W. Fontana

Maxwell’s demon is an entity in a 150-year-old thought experiment that paradoxically appears to violate the second law of thermodynamics by reducing entropy without doing work. It has increasingly practical implications as advances in nanomachinery produce devices that push the thermodynamic limits imposed by the second law. A well-known explanation claiming that information erasure restores second law compliance fails to resolve the paradox because it assumes the second law a priori, and does not predict irreversibility. Instead, a purely mechanical resolution that does not require information theory is presented. The transport fluxes of mass, momentum, and energy involved in the demon’s operation are analyzed and show that they imply “hidden” external work and dissipation. Computing the dissipation leads to a new lower bound on entropy production by the demon. It is strictly positive in all nontrivial cases, providing a more stringent limit than the second law and implying intrinsic thermodynamic irreversibility. The thermodynamic irreversibility is linked with mechanical irreversibility resulting from the spatial asymmetry of the demon’s speed selection criteria, indicating one mechanism by which macroscopic irreversibility may emerge from microscopic dynamics.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yukai Sun ◽  
Yelong Zheng ◽  
Le Song ◽  
Peiyuan Sun ◽  
Meirong Zhao ◽  
...  

The measurement of the droplets’ elasticity is vitally important in microfluidic and ink-jet printing. It refers to the ability of the droplet to restore its original shape and strong robustness. This study investigated a novel method to measure elasticity. The plate coated with super-hydrophobic layers pressed on a droplet and the elastic force was recorded by an electronic balance. Meanwhile, a mathematical model was constructed to calculate the changes of the droplet area under the force. The measurement showed that external work mainly converts into surface energy and the damping ratio increases from 0.068 to 0.261 with the increase of mass fraction from 0 to 80 wt%. It also indicates that the novel method can accurately and efficiently measure the elasticity of droplets.


2021 ◽  
Vol 6 (7) ◽  
pp. 144-152
Author(s):  
Onodagu P. Dinwoke ◽  
Aginam C. Henry ◽  
Uzodinma C. Franklin

This paper analysed the flexural behaviour of SSSS thick isotropic rectangular plates under transverse load using the Ritz method. It is assumed that the line that is normal to the mid-surface of the plate before bending does not remain the same after bending and consequently a shear deformation function f (z) is introduced. A polynomial shear deformation function f (z) was derived for this research. The total potential energy which was established by combining the strain energy and external work was subjected to direct variation to determine the governing equations for the in – plane and out-plane displacement coefficients. Numerical results for the present study were obtained for the thick isotropic SSSS rectangular plates and comparison of the results of this research and previous work done in literature showed good convergence. However, It was also observed that the result obtained in this present study are significantly upper bound as compared with the results of other researchers who employed the higher order shear deformation theory (HSDT), first order shear deformation theory (FSDT) and classical plate theory (CPT) theories for the in – plane and out of plane displacements at span – depth ratio of 4. Also, at a span - depth ratio of  and above, there was approximately no difference in the values obtained for the out of plane displacements and in-plane displacements between the CPT and the theory used in this study.


Author(s):  
Hiroto Murata ◽  
Genki Hisano ◽  
Daisuke Ichimura ◽  
Hiroshi Takemura ◽  
Hiroaki Hobara

Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running.


Mechanika ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 376-384
Author(s):  
Majid Eskandari Shahraki ◽  
Mahmoud Shariati ◽  
Mohsen Heydari Beni ◽  
Jafar Eskandari Jam

In this paper using the modified couple stress theory, to study the bending, buckling and vibration characteristics of the rectangular Mindlin's nanoplates with graphene material was investigated. With the aim of considering the effects of small scales, the modified couple stress theory, which has only one parameter of length scale and also was presented by Yang in 2002, was used. In the modified couple stress theory; the strain energy density is a function of the components of the strain tensor, curvature tensor, stress tensor and the symmetric part of the couple stress tensor. After obtaining the strain energy, external work, and buckling equation and placing them in the Hamilton's equation, the basic and auxiliary equations of the nanoplates were obtained. Then, by applying boundary and force conditions in the governing equations, the bending, buckling and vibration of the rectangular graphene nanoplates with thickness h and simply-supported conditions were explored. Also, the solution method was the Navier's solution.


2021 ◽  
Vol 11 (18) ◽  
pp. 8348
Author(s):  
Michele Conconi ◽  
Erica Montefiori ◽  
Nicola Sancisi ◽  
Claudia Mazzà

No consensus exists on how to model human articulations within MSK models for the analysis of gait dynamics. We propose a method to evaluate joint models and we apply it to three models with different levels of personalization. The method evaluates the joint model’s adherence to the MSK hypothesis of negligible joint work by quantifying ligament and cartilage deformations resulting from joint motion; to be anatomically consistent, these deformations should be minimum. The contrary would require considerable external work to move the joint, violating a strong working hypothesis and raising concerns about the credibility of the MSK outputs. Gait analysis and medical resonance imaging (MRI) from ten participants were combined to build lower limb subject-specific MSK models. MRI-reconstructed anatomy enabled three levels of personalization using different ankle joint models, in which motion corresponded to different ligament elongation and cartilage co-penetration. To estimate the impact of anatomical inconsistency in MSK outputs, joint internal forces resulting from tissue deformations were computed for each joint model and MSK simulations were performed ignoring or considering their contribution. The three models differed considerably for maximum ligament elongation and cartilage co-penetration (between 5.94 and 50.69% and between −0.53 and −5.36 mm, respectively). However, the model dynamic output from the gait simulations were similar. When accounting for the internal forces associated with tissue deformation, outputs changed considerably, the higher the personalization level the smaller the changes. Anatomical consistency provides a solid method to compare different joint models. Results suggest that consistency grows with personalization, which should be tailored according to the research question. A high level of anatomical consistency is recommended when individual specificity and the behavior of articular structures is under investigation.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yaofa Li ◽  
Gianluca Blois ◽  
Farzan Kazemifar ◽  
Razin S. Molla ◽  
Kenneth T. Christensen

Resolving pore-scale transient flow dynamics is crucial to understanding the physics underlying multiphase flow in porous media and informing large-scale predictive models. Surface properties of the porous matrix play an important role in controlling such physics, yet interfacial mechanisms remain poorly understood, in part due to a lack of direct observations. This study reports on an experimental investigation of the pore-scale flow dynamics of liquid CO2 and water in two-dimensional (2D) circular porous micromodels with different surface characteristics employing high-speed microscopic particle image velocimetry (μPIV). The design of the micromodel minimized side boundary effects due to the limited size of the domain. The high-speed μPIV technique resolved the spatial and temporal dynamics of multiphase flow of CO2 and water under reservoir-relevant conditions, for both drainage and imbibition scenarios. When CO2 displaced water in a hydrophilic micromodel (i.e., drainage), unstable capillary fingering occurred and the pore flow was dominated by successive pore-scale burst events (i.e., Haines jumps). When the same experiment was repeated in a nearly neutral wetting micromodel (i.e., weak imbibition), flow instability and fluctuations were virtually eliminated, leading to a more compact displacement pattern. Energy balance analysis indicates that the conversion efficiency between surface energy and external work is less than 30%, and that kinetic energy is a disproportionately smaller contributor to the energy budget. This is true even during a Haines jump event, which induces velocities typically two orders of magnitude higher than the bulk velocity. These novel measurements further enabled direct observations of the meniscus displacement, revealing a significant alteration of the pore filling mechanisms during drainage and imbibition. While the former typically featured burst events, which often occur only at one of the several throats connecting a pore, the latter is typically dominated by a cooperative filling mechanism involving simultaneous invasion of a pore from multiple throats. This cooperative filling mechanism leads to merging of two interfaces and releases surface energy, causing instantaneous high-speed events that are similar, yet fundamentally different from, burst events. Finally, pore-scale velocity fields were statistically analyzed to provide a quantitative measure of the role of capillary effects in these pore flows.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yu-Liang Chen ◽  
Wen-Kuan Huang ◽  
Jau-Nan Yeh

Inspired by the theories of Tate and Zaera, a theoretical analysis model including the erosion of the projectile, the cracking of ceramic composites, and the deformation of metal backplate was established in this study to investigate the bulletproof capability of the ceramic composites under impact by an armor piecing projectile (AP). The analysis results were verified by ballistic tests. As for the ceramic composites, the volume of the cracked ceramic conoid and the change in the compressive strength were included. Regarding the deformation of the metal backplate, the plastic deformation work, the external work, and the conservation of kinetics were considered. Based on the thickness of the target plate, failure modes were separated into the plug type and the petal type. The ordinary differential equation solver of MATLAB, ode45, was adopted to solve relevant ordinary differential equations. In this study, the powder metallurgy was used to produce the Al2O3/ZrO2 multilayered ceramic composites of three layers; each layer was 3 mm in thickness. The ceramic composites were paired with a backplate made of 6061-T6 aluminum alloy with a thickness of either 1 mm or 4 mm. The ballistic tests were executed by using 0.30″ AP projectiles to impact the specimens. The results from theoretical model and ballistic tests were compared and shown consistent in the field of residual velocity, residual bullet mass, and the failure modes of the metal backplate.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1622
Author(s):  
Erchiqui Fouad ◽  
Abdessamad Baatti ◽  
Karima Ben Hamou ◽  
Hamid Kaddami ◽  
Mhamed Souli ◽  
...  

Unmanned aerial vehicles (UAVs) or drones are attracting increasing interest in the aviation industry, both for military and civilian applications. The materials used so far in the manufacture of UAVs are wood, plastic, aluminum and carbon fiber. In this regard, a new family of high-density polyethylene (HDPE) nanocomposites reinforced with polymethylsilsesquioxane nanoparticles (PMSQ), with mechanical performances significantly superior to those of pure HPDE, has been prepared by a fusion-combination process. Their viscoelastic properties were determined by oscillatory shear tests and their viscoelastic behavior characterized by the Lodge integral model. Then, the Lagrangian formulation and the membrane theory assumption were used in the explicit implementation of the dynamic finite element formulation. For the forming phase, we considered the thermodynamic approach to express the external work in terms of closed volume. In terms of von Mises stress distribution and thickness in the blade, the results indicate that HDPE-PMSQ behaves like virgin HDPE. Furthermore, its materials, for all intents and purposes, require the same amount of energy to form as HDPE.


2021 ◽  
Vol 118 (20) ◽  
pp. e2023356118
Author(s):  
Tushar K. Saha ◽  
Joseph N. E. Lucero ◽  
Jannik Ehrich ◽  
David A. Sivak ◽  
John Bechhoefer

Information-driven engines that rectify thermal fluctuations are a modern realization of the Maxwell-demon thought experiment. We introduce a simple design based on a heavy colloidal particle, held by an optical trap and immersed in water. Using a carefully designed feedback loop, our experimental realization of an “information ratchet” takes advantage of favorable “up” fluctuations to lift a weight against gravity, storing potential energy without doing external work. By optimizing the ratchet design for performance via a simple theory, we find that the rate of work storage and velocity of directed motion are limited only by the physical parameters of the engine: the size of the particle, stiffness of the ratchet spring, friction produced by the motion, and temperature of the surrounding medium. Notably, because performance saturates with increasing frequency of observations, the measurement process is not a limiting factor. The extracted power and velocity are at least an order of magnitude higher than in previously reported engines.


Sign in / Sign up

Export Citation Format

Share Document