Role of paraventricular nucleus in regulation of sympathetic nerve frequency components

2003 ◽  
Vol 284 (5) ◽  
pp. H1710-H1720 ◽  
Author(s):  
Michael J. Kenney ◽  
Mark L. Weiss ◽  
Tammy Mendes ◽  
Yan Wang ◽  
Richard J. Fels

Autospectral and coherence analyses were used to determine the role of and interactions between paraventricular nucleus (PVN) nitric oxide, γ-aminobutyric acid (GABA), and the N-methyl-d-aspartic acid (NMDA)-glutamate receptor in regulation of sympathetic nerve discharge (SND) frequency components in anesthetized rats. Four observations were made. First, PVN microinjection of bicuculline (BIC) (GABAAreceptor antagonist), but not single PVN injections of NMDA (excitatory amino acid) or N G-monomethyl-l-arginine (l-NMMA; a nitric oxide synthase inhibitor), altered SND frequency components. Second, combined PVN microinjections ofl-NMMA and NMDA changed the SND bursting pattern; however, the observed pattern change was different from that produced by PVN BIC and not observed after sinoaortic denervation. Third, PVN microinjection of kynurenic acid prevented and reversed BIC-induced changes in the SND bursting pattern. Finally, vascular resistance (renal and splenic) was significantly increased after PVN BIC microinjection despite the lack of change in the level of renal and splenic SND. These data demonstrate that the PVN contains the neural substrate for altering SND frequency components and suggest complex interactions between specific PVN neurotransmitters and between PVN neurotransmitters and the arterial baroreceptor reflex in SND regulation.

1998 ◽  
Vol 201 (22) ◽  
pp. 3075-3083 ◽  
Author(s):  
T Mustafa ◽  
C Agnisola

A vasoconstrictory response to adenosine has been reported in coronary rings from fish. Since the reactivity of the large coronary arteries and the microcirculation may differ, the present study was undertaken to determine the role of adenosine in the intact coronary system of trout under constant pressure or flow using an isolated and non-working heart preparation. The involvement of nitric oxide (NO) and the interaction with noradrenaline were also studied. At 10(-9) to 10(-8 )mol l-1, adenosine caused a vasoconstrictory response, whereas between 10(-7) and 10(-5 )mol l-1 the response was predominantly vasodilative. Theophylline abolished both these responses to adenosine. The vasodilation induced by adenosine (at 10(-5 )mol l-1) was significantly reduced when the preparation was perfused under constant-flow than rather under constant-pressure conditions. The nitric oxide synthase inhibitor N-nitro-l-arginine (l-NA, 10(-4 )mol l-1) partially reduced the vasodilation induced by adenosine (at 10(-5 )mol l-1) under constant-pressure but not under constant-flow conditions. Perfusion of the intact coronary system with l-arginine or with adenosine significantly increased the rate of nitrite (NO2-) release, while perfusion with l-NA or theophylline reduced NO2- release. Chemical denudation of the coronary endothelium by CHAPS resulted in the loss of both the l-arginine- and adenosine-mediated vasodilation and the l-arginine-induced increase in the rate of NO2- release. Adenosine (10(-5 )mol l-1) offset and overrode the vasoconstriction induced by 10(-7 )mol l-1 noradrenaline. l-NA inhibited only the adenosine-induced vasodilation but not the ability to offset noradrenaline vasoconstriction, excluding the involvement of NO in the interaction between adenosine and noradrenaline.


2001 ◽  
Vol 281 (2) ◽  
pp. H975-H980 ◽  
Author(s):  
Hui Xu ◽  
Gregory D. Fink ◽  
Alex Chen ◽  
Stephanie Watts ◽  
James J. Galligan

The role of the sympathetic nervous system in 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol)-induced cardiovascular responses in urethane-anesthetized, normotensive rats was evaluated. Tempol caused dose-dependent (30–300 μmol/kg iv) decreases in renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate (HR). Similar responses were obtained after sinoaortic denervation and cervical vagotomy. These responses were not blocked following treatment with the nitric oxide synthase inhibitor N G-nitro-l-arginine (2.6 mg · kg−1 · min−1 iv for 5 min) or the α2-adrenergic receptor antagonist idazoxan (0.3 mg/kg iv bolus). Idazoxan blocked the effects of clonidine (10 μg/kg iv) on HR, MAP, and RSNA. Hexamethonium (30 mg/kg iv) inhibited RSNA, and tempol did not decrease RSNA after hexamethonium. The effects of tempol on HR and MAP were reduced by hexamethonium. In conclusion, depressor responses caused by tempol are mediated, partly, by sympathoinhibition in urethane-anesthetized, normotensive rats. Nitric oxide does not contribute to this response, and the sympathoinhibitory effect of tempol is not mediated via α2-adrenergic receptors. Finally, tempol directly decreases HR, which may contribute to the MAP decrease.


1998 ◽  
Vol 275 (3) ◽  
pp. H783-H788 ◽  
Author(s):  
Wei Wang

I have shown that cardiac sympathetic afferent stimulation by epicardial application of bradykinin (BK) was significantly enhanced in pacing-induced heart failure (HF) dogs. This enhancement appeared to be mediated by prostaglandins. The present study was to determine whether nitric oxide is involved in this enhancement. Under α-chloralose (100 mg/kg iv) anesthesia, the renal sympathetic nerve activity (RSNA) response to BK was determined in 15 HF and 15 sham dogs in the sinoaortic-denervated and vagotomized state. The RSNA response to BK was significantly enhanced in HF. This enhanced RSNA response to BK was significantly reduced in the HF dogs after administration of the cycloxygenase inhibitor indomethacin (5 mg/kg iv), but no significant change was found in the sham group. In contrast, RSNA responses to BK were significantly reduced in the sham dogs after administration of the nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME, 30 mg/kg iv), but no significant change was found in the HF group. These data suggest that the RSNA response to BK is mediated by nitric oxide to a large degree in the normal state but is primarily mediated by prostaglandins in the HF state.


1996 ◽  
Vol 271 (3) ◽  
pp. H860-H869 ◽  
Author(s):  
G. P. Nase ◽  
M. A. Boegehold

The purpose of this study was to determine whether arteriolar responses to increased sympathetic nerve activity are limited by the actions of endogenous nitric oxide. Intravital microscopy was used to examine diameter responses of small feed arteries (SFA), first-order arterioles (1A) and second-order arterioles (2A) to perivascular sympathetic nerve stimulation in the superfused rat small intestine. Stimulation induced a frequency-dependent constriction in all vessel types that was completely abolished by the alpha-adrenoceptor antagonist phentolamine (10(-6) M). In SFA and 1A, the magnitude of sympathetic constriction was increased significantly in the presence of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine(L-NMMA, 10(-4) M). In SFA (n = 7), stimulation at 3, 8, and 16 Hz induced constrictions of 11 +/- 1, 28 +/- 4, and 42 +/- 3%, respectively, under the normal superfusate vs. 28 +/- 3, 46 +/- 5, and 76 +/- 3% in the presence of L-NMMA. For 1A (n = 7), stimulation induced constrictions of 10 +/- 1, 27 +/- 4, and 37 +/- 3% under the normal superfusate vs. 24 +/- 2, 47 +/- 3, and 72 +/- 4% in the presence of L-NMMA. The effect of L-NMMA on sympathetic constriction in SFA (n = 7) was completely reversed by the additional presence of 5 x 10(-3) M L-arginine in the superfusate. These results suggest that endogenous nitric oxide activity can attenuate sympathetic neurogenic constriction in the intestinal microvasculature.


2011 ◽  
Vol 301 (5) ◽  
pp. R1529-R1539 ◽  
Author(s):  
Annie M. Whitaker ◽  
Jesse K. Sulzer ◽  
Patricia E. Molina

Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300–325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg−1·h−1) or dextrose prior to a 60-min fixed-pressure hemorrhage (∼40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg−1·min−1). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.


2001 ◽  
Vol 281 (3) ◽  
pp. H1233-H1241 ◽  
Author(s):  
Michael J. Kenney ◽  
Mark L. Weiss ◽  
Kaushik P. Patel ◽  
Yan Wang ◽  
Richard J. Fels

Autospectral and coherence analyses were used to determine the effect of paraventricular nucleus (PVN) GABAA receptor antagonism [microinfusion or microinjections of bicuculline methiodide (BMI) 100 pmoles] on sympathetic nerve discharge (SND) frequency components (bursting pattern and relationships between discharges in regionally selective nerves) in α-chloralose-anesthetized rats. SND was recorded from the renal, splenic, and lumbar nerves. The following observations were made. First, PVN BMI microinjections, but not PVN saline or cortical BMI microinjections, transformed the cardiac-related SND bursting pattern in baroreceptor-innervated rats to one characterized by the presence of low-frequency bursts not synchronized to the cardiac cycle or phrenic nerve discharge bursts. Second, SND pattern changes were similar in the renal, splenic, and lumbar nerves, and peak coherence values relating low-frequency bursts in sympathetic nerve pairs (renal-splenic, renal-lumbar, and splenic-lumbar) were significantly increased from preinjection control after PVN BMI microinjection. Third, PVN BMI microinjections significantly increased the coupling between low-frequency SND bursts in baroreceptor-denervated rats. Finally, PVN BMI-induced changes in the SND bursting pattern were not observed after PVN pretreatment with muscimol (GABA agonist, 1 nmole). We conclude that PVN GABAA receptor antagonism profoundly alters the frequency components in sympathetic nerves.


2001 ◽  
Vol 90 (4) ◽  
pp. 1474-1480 ◽  
Author(s):  
Oscar E. Suman ◽  
Kenneth C. Beck

Airway function is largely preserved during exercise or isocapnic hyperventilation in humans and guinea pigs despite likely changes in airway milieu during hyperpnea. It is only on cessation of a hyperpneic challenge that airway function deteriorates significantly. We tested the hypothesis that nitric oxide, a known bronchodilator that is produced in the lungs and bronchi, might be responsible for the relative bronchodilation observed during hyperventilation (HV) in guinea pigs. Three groups of anesthetized guinea pigs were given saline and three groups given 50 mg/kg N G-monomethyl-l-arginine (l-NMMA), a potent nitric oxide synthase inhibitor. Three isocapnic ventilation groups included normal ventilation [40 breaths/min, 6 ml/kg tidal volume (Vt)], increased respiratory rate only (150 breaths/min, 6 ml/kg Vt), and increased respiratory rate and increased volume (100 breaths/min, 8 ml/kg Vt). l-NMMA reduced expired nitric oxide in all groups. Expired nitric oxide was slightly but significantly increased by HV in the saline groups. However, inhibition of nitric oxide production had no significant effect on rate of rise of respiratory system resistance (Rrs) during HV or on the larger rise in Rrs seen 6 min after HV. We conclude that nitric oxide synthase inhibition has no effect on changes in Rrs, either during or after HV in guinea pigs.


Sign in / Sign up

Export Citation Format

Share Document