scholarly journals Right ventricular regional wall curvedness and area strain in patients with repaired tetralogy of Fallot

2012 ◽  
Vol 302 (6) ◽  
pp. H1306-H1316 ◽  
Author(s):  
Liang Zhong ◽  
Like Gobeawan ◽  
Yi Su ◽  
Ju-Le Tan ◽  
Dhanjoo Ghista ◽  
...  

A quantitative understanding of right ventricular (RV) remodeling in repaired tetralogy of Fallot (rTOF) is crucial for patient management. The objective of this study is to quantify the regional curvatures and area strain based on three-dimensional (3-D) reconstructions of the RV using cardiac magnetic resonance imaging (MRI). Fourteen ( 14 ) rTOF patients and nine ( 9 ) normal subjects underwent cardiac MRI scan. 3-D RV endocardial surface models were reconstructed from manually delineated contours and correspondence between end-diastole (ED) and end systole (ES) was determined. Regional curvedness ( C) and surface area at ED and ES were calculated as well as the area strain. The RV shape and deformation in rTOF patients differed from normal subjects in several respects. Firstly, the curvedness at ED (mean for 13 segments, 0.030 ± 0.0076 vs. 0.029 ± 0.0065 mm−1; P < 0.05) and ES (mean for 13 segments, 0.040 ± 0.012 vs. 0.034 ± 0.0072 mm−1; P < 0.001) was decreased by chronic pulmonary regurgitation. Secondly, the surface area increased significantly at ED (mean for 13 segments, 982 ± 192 vs. 1,397 ± 387 mm2; P < 0.001) and ES (mean for 13 segments, 576 ± 130 vs. 1,012 ± 302 mm2; P < 0.001). In particular, rTOF patients had significantly larger surface area than that in normal subjects in the free wall but not for the septal wall. Thirdly, area strain was significantly decreased (mean for 13 segments, 56 ± 6 vs. 34 ± 7%; P < 0.0001) in rTOF patients. Fourthly, there were increases in surface area at ED (5,726 ± 969 vs. 6,605 ± 1,122 mm2; P < 0.05) and ES (4,280 ± 758 vs. 5,569 ± 1,112 mm2; P < 0.01) and decrease in area strain (29 ± 8 vs. 18 ± 8%; P < 0.001) for RV outflow tract. These findings suggest significant geometric and strain differences between rTOF and normal subjects that may help guide therapeutic treatment.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jurate Bidviene ◽  
Denisa Muraru ◽  
Attila Kovacs ◽  
Bálint Lakatos ◽  
Egle Ereminiene ◽  
...  

Abstract Background Data about the right ventricular (RV) mechanics adaptation to volume overload in patients with repaired tetralogy of Fallot (rToF) are limited. Accordingly, we sought to assess the mechanics of the functional remodeling occurring in the RV of rToF with severe pulmonary regurgitation. Methods We used three-dimensional transthoracic echocardiography (3DTE) to obtain RV data sets from 33 rToF patients and 30 age- and sex- matched controls. A 3D mesh model of the RV was generated, and RV global and regional longitudinal (LS) and circumferential (CS) strain components, and the relative contribution of longitudinal (LEF), radial (REF) and anteroposterior (AEF) wall motion to global RV ejection fraction (RVEF) were computed using the ReVISION method. Results Corresponding to decreased global RVEF (45 ± 6% vs 55 ± 5%, p < 0.0001), rToF patients demonstrated lower absolute values of LEF (17 ± 4 vs 28 ± 4), REF (20 ± 5 vs 25 ± 4) and AEF (17 ± 5 vs 21 ± 4) than controls (p < 0.01). However, only the relative contribution of LEF to global RVEF (0.39 ± 0.09 vs 0.52 ± 0.05, p < 0.0001) was significantly decreased in rToF, whereas the contribution of REF (0.45 ± 0.08 vs 0.46 ± 0.04, p > 0.05) and AEF (0.38 ± 0.09 vs 0.39 ± 0.04, p > 0.05) to global RVEF was similar to controls. Accordingly, rToF patients showed lower 3D RV global LS (-16.94 ± 2.9 vs -23.22 ± 2.9, p < 0.0001) and CS (-19.79 ± 3.3 vs -22.81 ± 3.5, p < 0.01) than controls. However, looking at the regional RV deformation, the 3D CS was lower in rToF than in controls only in the basal RV free-wall segment (p < 0.01). 3D RV LS was reduced in all RV free-wall segments in rToF (p < 0.0001), but similar to controls in the septum (p > 0.05). Conclusions 3DTE allows a quantitative evaluation of the mechanics of global RVEF. In rToF with chronic volume overload, the relative contribution of the longitudinal shortening to global RVEF is affected more than either the radial or the anteroposterior components.


2018 ◽  
Vol 315 (6) ◽  
pp. H1691-H1702 ◽  
Author(s):  
Pia Sjöberg ◽  
Johannes Töger ◽  
Erik Hedström ◽  
Per Arvidsson ◽  
Einar Heiberg ◽  
...  

Intracardiac hemodynamic forces have been proposed to influence remodeling and be a marker of ventricular dysfunction. We aimed to quantify the hemodynamic forces in patients with repaired tetralogy of Fallot (rToF) to further understand the pathophysiological mechanisms as this could be a potential marker for pulmonary valve replacement (PVR) in these patients. Patients with rToF and pulmonary regurgitation (PR) > 20% ( n = 18) and healthy control subjects ( n = 15) underwent MRI, including four-dimensional flow. A subset of patients ( n = 8) underwent PVR and MRI after surgery. Time-resolved hemodynamic forces were quantified using 4D-flow data and indexed to ventricular volume. Patients had higher systolic and diastolic left ventricular (LV) hemodynamic forces compared with control subjects in the lateral-septal/LV outflow tract ( P = 0.011 and P = 0.0031) and inferior-anterior ( P < 0.0001 and P < 0.0001) directions, which are forces not aligned with blood flow. Forces did not change after PVR. Patients had higher RV diastolic forces compared with control subjects in the diaphragm-right ventricular (RV) outflow tract (RVOT; P < 0.001) and apical-basal ( P = 0.0017) directions. After PVR, RV systolic forces in the diaphragm-RVOT direction decreased ( P = 0.039) to lower levels than in control subjects ( P = 0.0064). RV diastolic forces decreased in all directions ( P = 0.0078, P = 0.0078, and P = 0.039) but were still higher than in control subjects in the diaphragm-RVOT direction ( P = 0.046). In conclusion, patients with rToF and PR had LV hemodynamic forces less aligned with intraventricular blood flow compared with control subjects and higher diastolic RV forces along the regurgitant flow direction in the RVOT and that of tricuspid inflow. Remaining force differences in the LV and RV after PVR suggest that biventricular pumping does not normalize after surgery. NEW & NOTEWORTHY Biventricular hemodynamic forces in patients with repaired tetralogy of Fallot and pulmonary regurgitation were quantified for the first time. Left ventricular hemodynamic forces were less aligned to the main blood flow direction in patients compared with control subjects. Higher right ventricular forces were seen along the pulmonary regurgitant and tricuspid inflow directions. Differences in forces versus control subjects remain after pulmonary valve replacement, suggesting that altered biventricular pumping does not normalize after surgery.


2019 ◽  
Vol 21 (8) ◽  
pp. 906-913 ◽  
Author(s):  
Imran Rashid ◽  
Adil Mahmood ◽  
Tevfik F Ismail ◽  
Shamus O’Meagher ◽  
Shelby Kutty ◽  
...  

Abstract Aims The optimal timing for pulmonary valve replacement in asymptomatic patients with repaired Tetralogy of Fallot (rTOF) and pulmonary regurgitation remains uncertain but is often guided by increases in right ventricular (RV) end-diastolic volume. As cardiopulmonary exercise testing (CPET) performance is a strong prognostic indicator, we assessed which cardiovascular magnetic resonance (CMR) parameters correlate with reductions in exercise capacity to potentially improve identification of high-risk patients. Methods and results In all, 163 patients with rTOF (mean age 24.5 ± 10.2 years) who had previously undergone CMR and standardized CPET protocols were included. The indexed right and left ventricular end-diastolic volumes (RVEDVi, LVEDVi), right and left ventricular ejection fractions (RVEF, LVEF), indexed RV stroke volume (RVSVi), and pulmonary regurgitant fraction (PRF) were quantified by CMR and correlated with CPET-determined peak oxygen consumption (VO2) or peak work. On univariable analysis, there was no significant correlation between RVEDVi and PRF with peak VO2 or peak work (% Jones-predicted). In contrast, RVEF and RVSVi had significant correlations with both peak VO2 and peak work that remained significant on multivariable analysis. For a previously established prognostic peak VO2 threshold of &lt;27 mL/kg/min, receiver-operating characteristic curve analysis demonstrated a Harrell’s c of 0.70 for RVEF (95% confidence interval 0.61–0.79) with a sensitivity of 88% for RVEF &lt;40%. Conclusion In rTOF, CMR indices of RV systolic function are better predictors of CPET performance than RV size. An RVEF &lt;40% may be useful to identify prognostically significant reductions in exercise capacity in patients with varying degrees of RV dilatation.


2014 ◽  
Vol 3 ◽  
pp. 28-31 ◽  
Author(s):  
Shamus O’Meagher ◽  
Madhusudan Ganigara ◽  
David J. Tanous ◽  
David S. Celermajer ◽  
Rajesh Puranik

Author(s):  
Namheon Lee ◽  
Ashish Das ◽  
William M. Gottliebson ◽  
Rupak K. Banerjee

Pulmonary insufficiency (PI) induces pulmonary regurgitation and often leads to right ventricular (RV) enlargement and RV pressure overloading in repaired Tetralogy of Fallot (rTOF) patients. The appropriate timing of surgical treatments to renormalize RV function remains uncertain due to lack of suitable clinical diagnostic parameters. An energy transfer ratio (eMPA) between the net energy (Enet) transferred at main pulmonary artery (MPA) from RV and stroke work (SW) by RV was calculated using RV volume and pressure data for subjects in two study groups: the rTOF patient group (n = 7) and the control group (n = 7). Statistical analysis was performed to determine the difference of eMPA between the two groups. The mean eMPA for rTOF patients (0.64) was significantly lower (60.2%, p<0.05) than that of controls (1.61).


Sign in / Sign up

Export Citation Format

Share Document