Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies

2006 ◽  
Vol 291 (3) ◽  
pp. H1036-H1046 ◽  
Author(s):  
Lufang Zhou ◽  
Marco E. Cabrera ◽  
Isidore C. Okere ◽  
Naveen Sharma ◽  
William C. Stanley

In response to exercise, the heart increases its metabolic rate severalfold while maintaining energy species (e.g., ATP, ADP, and Pi) concentrations constant; however, the mechanisms that regulate this response are unclear. Limited experimental studies show that the classic regulatory species NADH and NAD+ are also maintained nearly constant with increased cardiac power generation, but current measurements lump the cytosol and mitochondria and do not provide dynamic information during the early phase of the transition from low to high work states. In the present study, we modified our previously published computational model of cardiac metabolism by incorporating parallel activation of ATP hydrolysis, glycolysis, mitochondrial dehydrogenases, the electron transport chain, and oxidative phosphorylation, and simulated the metabolic responses of the heart to an abrupt increase in energy expenditure. Model simulations showed that myocardial oxygen consumption, pyruvate oxidation, fatty acids oxidation, and ATP generation were all increased with increased energy expenditure, whereas ATP and ADP remained constant. Both cytosolic and mitochondrial NADH/NAD+ increased during the first minutes (by 40% and 20%, respectively) and returned to the resting values by 10–15 min. Furthermore, model simulations showed that an altered substrate selection, induced by either elevated arterial lactate or diabetic conditions, affected cytosolic NADH/NAD+ but had minimal effects on the mitochondrial NADH/NAD+, myocardial oxygen consumption, or ATP production. In conclusion, these results support the concept of parallel activation of metabolic processes generating reducing equivalents during an abrupt increase in cardiac energy expenditure and suggest there is a transient increase in the mitochondrial NADH/NAD+ ratio that is independent of substrate supply.

2005 ◽  
Vol 288 (5) ◽  
pp. H2102-H2110 ◽  
Author(s):  
Peipei Wang ◽  
Steven G. Lloyd ◽  
Huadong Zeng ◽  
Arend Bonen ◽  
John C. Chatham

The goal of this study was to determine whether changes in cardiac metabolism in Type 2 diabetes are associated with contractile dysfunction or impaired response to ischemia. Hearts from Zucker diabetic fatty (ZDF) and lean control rats were isolated and perfused with glucose, lactate, pyruvate, and palmitate. The rates of glucose, lactate, pyruvate, and palmitate oxidation rates and glycolysis were determined during baseline perfusion and low-flow ischemia (LFI; 0.3 ml/min for 30 min) and after LFI and reperfusion. Under all conditions, ATP synthesis from palmitate was increased and synthesis from lactate was decreased in the ZDF group, whereas the contribution from glucose was unchanged. During baseline perfusion, the rate of glycolysis was lower in the ZDF group; however, during LFI and reperfusion, there were no differences between groups. Despite these metabolic shifts, there were no differences in oxygen consumption or ATP production rates between the groups under any perfusion conditions. Cardiac function was slightly depressed before LFI in the ZDF group, but during reperfusion, function was improved relative to the control group despite the increased dependence on fatty acids for energy production. These data suggest that in this model of diabetes, the shift from carbohydrates to fatty acids for oxidative energy production did not increase myocardial oxygen consumption and was not associated with impaired response to ischemia and reperfusion.


1978 ◽  
Vol 17 (04) ◽  
pp. 142-148
Author(s):  
U. Büll ◽  
S. Bürger ◽  
B. E. Strauer

Studies were carried out in order to determine the factors influencing myocardial 201T1 uptake. A total of 158 patients was examined with regard to both 201T1 uptake and the assessment of left ventricular and coronary function (e. g. quantitative ventriculography, coronary arteriography, coronary blood flow measurements). Moreover, 42 animal experiments (closed chest cat) were performed. The results demonstrate that:1) 201T1 uptake in the normal and hypertrophied human heart is linearly correlated with the muscle mass of the left ventricle (LVMM);2) 201T1 uptake is enhanced in the inner (subendocardial) layer and is decreased in the outer (subepicardial) layer of the left ventricular wall. The 201T1 uptake of the right ventricle is 40% lower in comparison to the left ventricle;3) the basic correlation between 201T1 uptake and LVMM is influenced by alterations of both myocardial flow and myocardial oxygen consumption; and4) inotropic interventions (isoproterenol, calcium, norepinephrine) as well as coronary dilatation (dipyridamole) may considerably augment 201T1 uptake in accordance with changes in myocardial oxygen consumption and/or myocardial flow.It is concluded that myocardial 201T1 uptake is determined by multiple factors. The major determinants have been shown to include (i) muscle mass, (ii) myocardial flow and (iii) myocardial oxygen consumption. The clinical data obtained from patient groups with normal ventricular function, with coronary artery disease, with left ventricular wall motion abnormalities and with different degree of left ventricular hypertrophy are correlated with quantitated myocardial 201T1 uptake.


Circulation ◽  
1979 ◽  
Vol 60 (2) ◽  
pp. 170-173 ◽  
Author(s):  
P L Wilkinson ◽  
J R Moyers ◽  
T Ports ◽  
K Chatterjee ◽  
D Ullyott ◽  
...  

Circulation ◽  
1997 ◽  
Vol 95 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Xiaoping Zhang ◽  
Yi-Wu Xie ◽  
Alberto Nasjletti ◽  
Xiaobin Xu ◽  
Michael S. Wolin ◽  
...  

Author(s):  
Takuya Nishikawa ◽  
Kazunori Uemura ◽  
Yohsuke Hayama ◽  
Toru Kawada ◽  
Keita Saku ◽  
...  

AbstractBeta-blockers are well known to reduce myocardial oxygen consumption (MVO2) and improve the prognosis of heart failure (HF) patients. However, its negative chronotropic and inotropic effects limit their use in the acute phase of HF due to the risk of circulatory collapse. In this study, as a first step for a safe β-blocker administration strategy, we aimed to develop and evaluate the feasibility of an automated β-blocker administration system. We developed a system to monitor arterial pressure (AP), left atrial pressure (PLA), right atrial pressure, and cardiac output. Using negative feedback of hemodynamics, the system controls AP and PLA by administering landiolol (an ultra-short-acting β-blocker), dextran, and furosemide. We applied the system for 60 min to 6 mongrel dogs with rapid pacing-induced HF. In all dogs, the system automatically adjusted the doses of the drugs. Mean AP and mean PLA were controlled within the acceptable ranges (AP within 5 mmHg below target; PLA within 2 mmHg above target) more than 95% of the time. Median absolute performance error was small for AP [median (interquartile range), 3.1% (2.2–3.8)] and PLA [3.6% (2.2–5.7)]. The system decreased MVO2 and PLA significantly. We demonstrated the feasibility of an automated β-blocker administration system in a canine model of acute HF. The system controlled AP and PLA to avoid circulatory collapse, and reduced MVO2 significantly. As the system can help the management of patients with HF, further validations in larger samples and development for clinical applications are warranted.


2021 ◽  
Vol 22 (5) ◽  
pp. 2578
Author(s):  
Trim Lajqi ◽  
Christian Marx ◽  
Hannes Hudalla ◽  
Fabienne Haas ◽  
Silke Große ◽  
...  

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


1970 ◽  
Vol 219 (3) ◽  
pp. 604-612 ◽  
Author(s):  
WJ Gamble ◽  
PA Conn ◽  
AE Kumar ◽  
R Plenge ◽  
RG Monroe

Sign in / Sign up

Export Citation Format

Share Document