Physiologic effects of normal-or low-oxygen-affinity red cells in hypoxic baboons

1977 ◽  
Vol 232 (1) ◽  
pp. H79-H84 ◽  
Author(s):  
J. I. Spector ◽  
C. G. Zaroulis ◽  
L. E. Pivacek ◽  
C. P. Emerson ◽  
C. R. Valeri

Baboons were bled one-third their red cell mass and were given homologous transfusions of red blood cells to restore the red cell volume. One group of baboons received red blood cells with a normal 2,3-diphosphoglycerate 2,3-DPG) level and normal affinity for oxygen, and in this group the 2,3-DPG level after transfusion was normal. The other group received red blood cells with a 160% of normal 2,3-DPG level and decreased affinity for oxygen, and in this group the 2,3-DPG level after transfusion was 125% of normal. In both groups of baboons, the inspired oxygen concentration was lowered and arterial PO2 tension was maintained at 55-60 mmHg for 2 h after transfusion. During the hypoxic state, systemic oxygen extraction was similar in the two groups, whereas oxygen saturation was lower in the high 2,3-DPG group than in the control animals. Cardiac output was significantly reduced 30 min after the arterial PO2 was restored to normal. These data indicate that red blood cells with decreased affinity for oxygen maintained satisfactory oxygen delivery to tissue during hypoxia.

Blood ◽  
1971 ◽  
Vol 38 (4) ◽  
pp. 463-467 ◽  
Author(s):  
STAVROS HAIDAS ◽  
DOMINIQUE LABIE ◽  
JEAN-CLAUDE KAPLAN

Abstract A parallel decline of 2,3-diphosphoglycerate (2,3-DPG) and P50 of intracorpuscular hemoglobin is found in red blood cells during their in vivo aging. After 2,3-DPG depletion due to in vitro storage, the capacity to restore, 2,3-DPG in the presence of inosine is significantly impaired in senescent cells as compared with young cells.


PEDIATRICS ◽  
1973 ◽  
Vol 51 (3) ◽  
pp. 494-500 ◽  
Author(s):  
Frank A. Oski

The red blood cells of the human fetus differ in many major respects from the red cells of the normal adult. These differences appear admirably suited for the acquisition, transport, and release of oxygen in the low oxygen atmosphere of intrauterine existence. These same differences appear to confer a handicap to the cell in the extrauterine environment, particularly under conditions of hypoxic stress. The rapid replacement of these cells by artificial means, such as early exchange transfusion, may offer an advantage to the newborn infant in certain clinical situations.


1978 ◽  
Vol 45 (1) ◽  
pp. 7-10 ◽  
Author(s):  
H. Bard ◽  
J. C. Fouron ◽  
J. E. Robillard ◽  
A. Cornet ◽  
M. A. Soukini

Studies were carried out during fetal life in sheep to determine the relationship of 2,3-diphosphoglycerate (DPG), the intracellular red cell and extracellular pH, and the switchover to adult hemoglobin synthesis in regulating the position of the fetal red cell oxygen-affinity curve in utero. Adult hemoglobin first appeared near 120 days of gestation. The mean oxygen tension at which hemoglobin is half saturated (P50) prior to 120 days of gestation remained constant at 13.9 +/- 0.3 (SD) Torr and then increased gradually as gestation continued, reaching 19 Torr at term. During the interval of fetal life studied, the level of DPG was 4.43 +/- 1.63 (SD) micromol/g Hb and the deltapH between plasma and red blood cells was 0.227 +/- 0.038 (SD); neither was affected by gestational age. The decrease in the red cell oxygen affinity after 120 days of gestation ocrrelated with the amount of adult hemoglobin present in the fetus (r = 0.78; P less than 0.001). This decrease can be attributed only to the amount of the adult-type hemoglobin present, and not to DPG, or to changes in the deltapH between plasma and red blood cells, because both remained stable during the last trimester.


1996 ◽  
Vol 271 (4) ◽  
pp. R973-R981 ◽  
Author(s):  
S. Glombitza ◽  
S. Dragon ◽  
M. Berghammer ◽  
M. Pannermayr ◽  
R. Baumann

In late chick embryos, coordinate activation of red cell carbonic anhydrase II (CAII) and 2,3-diphosphoglycerate (2,3-DPG) synthesis is initiated by hypoxia. The effects are mediated by unidentified hormonal effectors resident in chick plasma. In the present investigation, we have analyzed the effect of adenosine receptor stimulation on embryonic red cell CAII and 2,3-DPG synthesis. We find that primitive and definitive embryonic red blood cells from chick have an A2a adenosine receptor. Stimulation of the receptor with metabolically stable adenosine analogues causes a large increase of red cell adenosine 3',5'-cyclic monophosphate (cAMP) and subsequent activation of red cell CAII and 2,3-DPG production in definitive red blood cells and of CAII synthesis in primitive red blood cells. Direct stimulation of adenylyl cyclase with forskolin has the same effect. Analysis of red cell protein pattern after labeling with [35S]methionine shows that stimulation of red cell cAMP levels activates synthesis of several other proteins aside from CAII. Presence of actinomycin D inhibits cAMP-dependent changes of protein synthesis, indicating that cAMP-dependent transcriptional activation is required. In contrast to the stable adenosine receptor analogues, adenosine itself was a very weak agonist, unless its metabolism was significantly inhibited. Thus, besides adenosine, other effectors of the adenylyl cyclase system are likely to be involved in the O2 pressure-dependent regulation of red cell metabolism in late development of avian embryos.


Blood ◽  
1974 ◽  
Vol 43 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Marilyn E. Miller ◽  
Charles G. Zaroulis ◽  
C. Robert Valeri ◽  
Frederick Stohlman

Abstract Ten patients undergoing chronic hemodialysis for end-stage renal disease were studied in order to determine the acute effects of hemodialysis on the metabolic function of the erythrocyte in anemic uremic patients. Prior to hemodialysis there was a mean red cell mass deficit of 148 g Hb/sq m. The affinity of hemoglobin for oxygen was decreased, and this was associated with an increase in intraerythrocytic levels of 2,3-DPG and ATP. The plasma phosphorus levels were also increased in the predialysis period. Following 5-6 hr of hemodialysis the affinity of hemoglobin for oxygen and the intraerythrocytic levels of 2,3-DPG were unchanged from the predialysis values despite a significant reduction in plasma phosphorus levels and a significant increase in both whole blood and intraerythrocytic pH. From these data we conclude that the maintenance of the red cell’s decreased oxygen affinity resulted from the increase in intraerythrocytic pH which maintained the intraerythrocytic levels of 2,3-DPG despite a reduction in plasma phosphorus. The reduction in plasma phosphorus was primarily reflected in a decrease in red cell ATP.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3730-3730
Author(s):  
Ghislain Cournoyer ◽  
Harry Bard ◽  
Xiaoduan Weng ◽  
Louise Robin ◽  
Carmen Gagnon ◽  
...  

Abstract Introduction: A 38-year-old causasian male with hepatomegaly, splenomegaly and erythrocytosis (Ht 69.2%, Hb 217 g/L, MCV 76fl, normal WBC and platelets counts) presented with flank pain found to be a renal artery thrombosis. He had a history of increased Ht since birth without bone marrow (BM), cardiac, pulmonary, renal or cerebral anomalies and for which a diagnosis of a high oxygen affinity hemoglobinopathy was made. The disease had previously been uncomplicated without therapy. Initial evaluation in our center revealed a normal BM morphology, a normal karyotype and an abnormal Hb HPLC (elevated HbF (4.9%) and an abnormal Hb eluting after normal HbA1). The red cell mass was increased at 74.9 ml/kg (normal = 26.5 ml/kg). The oxygen (O2) P50 saturation determined from the Hb-O2 dissociation curve using an Hemox-Analyser was markedly decreased at 6 mmHg (normal = 27 mmHg). α and β globins (gb) HPLC demonstrated normal α, but 100% abnormal β-gb. A diagnosis of a double heterozygote for β-gb gene was established: an allele with mutation causing high affinity for O2 and an allele causing β-thalassemia (thal) minor. Anticoagulation and serial phlebotomies did not improve the erythrocytosis. Therapy with hydroxyurea (HU) was therefore proposed to the patient. Objectives: To determine the β-gb genotype and to evaluate the effect of HU therapy at maximally tolerated dose (MTD) on induction of HbF and its effect on Ht, P50, red cell mass, 2,3-DPG and total HbNO concentrations. Methods and results: Sequencing of the β-gb locus was done by RT-PCR amplified mRNA and by PCR amplified DNA, using primers spanning almost the entire gene (−450 to 601 bp, excluding a small portion of IVS2). Two mutations were identified: Leu96→Val (339C→G) in exon 2, producing Hb Regina, a high O2 affinity hemoglobin variant, and IVS1-110 G/A, a frequent mutation causing β-thal minor. Therapy with HU was initiated at 7 mg/kg/day. Dose was increased to MTD resulting in a dose of 25 mg/kg/day. Table 1 summarizes variations in relevant parameters while on HU therapy. Conclusion: HU rapidly induced HgF and improved measured parameters in this patient with a high O2 affinity Hb/β-thal minor. HU’s effect in this case did not seem to be strictly related to its anti-proliferation properties. Induction of HbF and subsequent increase in P50 probably reduced Epo production (data pending) and erythropoiesis. Modifications in other mediators of O2 release were also modified by HU. The changes in HbNO are not totally consistant with the rest of the data, being increased at 3 months but decreased at 6 months. While on HU therapy, the patient did not present any new complications (thrombotic or other) and clinically reported an improved exercise tolerance. Further evaluation will focus on epigenetic factors affecting HbF expression and correlation of NO level with plasma L-arginine concentration. Time HU dose (mg/kg) Ht (%) HbF (%) P50 (mm/Hg) 2,3-DPG (umol/g Hb) Total HbNO (nM) Red cell mass (ml/kg) NA: not available, TBD: to be determined Baseline 0 61.1 3.6 6 21.3 242.7 74.9 3 months 21 69.4 9.1 6 19.0 694.3 NA 6 months 25 56.9 15.1 9 21.4 105.8 NA 8 months 25 46.7 25.4 TBD TBD TBD 51.7


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 189-197 ◽  
Author(s):  
HF Bunn

Throughout their evolution, mammalian hemoglobins have acquired a broad repertoire of functional properties well suited to the internal milieu of the red cell. Mammals display a wide range in whole blood oxygen affinity dependent on three major factors: the intrinsic oxygen affinity of the hemoglobin, the level of red cell 2,3-DPG, and the response of the hemoglobin to 2,3-DPG. The concentration of 2,3-DPG varies among groups of mammals. Those animals (cats and ruminants) that have very low levels of this intracellular mediator have hemoglobins of intrinsically low oxygen affinity that fail to respond to the addition of 2,3-DPG. Mammals that have adapted to various types of hypoxia tend to have increased oxygen affinity, primarily mediated through reduced levels of red cell 2,3-DPG. In contrast, mammals who are experimentally subjected to low oxygen tensions develop decreased oxygen affinity owing to increased red cell 2,3-DPG. Mammals employ one of three different mechanisms for the maintenance of higher oxygen affinity of fetal red cells, compared to maternal red cells. Many of these phenomena can be satisfactorily explained at the molecular level but their adaptational significance is less clear.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 189-197 ◽  
Author(s):  
HF Bunn

Abstract Throughout their evolution, mammalian hemoglobins have acquired a broad repertoire of functional properties well suited to the internal milieu of the red cell. Mammals display a wide range in whole blood oxygen affinity dependent on three major factors: the intrinsic oxygen affinity of the hemoglobin, the level of red cell 2,3-DPG, and the response of the hemoglobin to 2,3-DPG. The concentration of 2,3-DPG varies among groups of mammals. Those animals (cats and ruminants) that have very low levels of this intracellular mediator have hemoglobins of intrinsically low oxygen affinity that fail to respond to the addition of 2,3-DPG. Mammals that have adapted to various types of hypoxia tend to have increased oxygen affinity, primarily mediated through reduced levels of red cell 2,3-DPG. In contrast, mammals who are experimentally subjected to low oxygen tensions develop decreased oxygen affinity owing to increased red cell 2,3-DPG. Mammals employ one of three different mechanisms for the maintenance of higher oxygen affinity of fetal red cells, compared to maternal red cells. Many of these phenomena can be satisfactorily explained at the molecular level but their adaptational significance is less clear.


Sign in / Sign up

Export Citation Format

Share Document