Adenosine causes cAMP-dependent activation of chick embryo red cell carbonic anhydrase and 2,3-DPG synthesis

1996 ◽  
Vol 271 (4) ◽  
pp. R973-R981 ◽  
Author(s):  
S. Glombitza ◽  
S. Dragon ◽  
M. Berghammer ◽  
M. Pannermayr ◽  
R. Baumann

In late chick embryos, coordinate activation of red cell carbonic anhydrase II (CAII) and 2,3-diphosphoglycerate (2,3-DPG) synthesis is initiated by hypoxia. The effects are mediated by unidentified hormonal effectors resident in chick plasma. In the present investigation, we have analyzed the effect of adenosine receptor stimulation on embryonic red cell CAII and 2,3-DPG synthesis. We find that primitive and definitive embryonic red blood cells from chick have an A2a adenosine receptor. Stimulation of the receptor with metabolically stable adenosine analogues causes a large increase of red cell adenosine 3',5'-cyclic monophosphate (cAMP) and subsequent activation of red cell CAII and 2,3-DPG production in definitive red blood cells and of CAII synthesis in primitive red blood cells. Direct stimulation of adenylyl cyclase with forskolin has the same effect. Analysis of red cell protein pattern after labeling with [35S]methionine shows that stimulation of red cell cAMP levels activates synthesis of several other proteins aside from CAII. Presence of actinomycin D inhibits cAMP-dependent changes of protein synthesis, indicating that cAMP-dependent transcriptional activation is required. In contrast to the stable adenosine receptor analogues, adenosine itself was a very weak agonist, unless its metabolism was significantly inhibited. Thus, besides adenosine, other effectors of the adenylyl cyclase system are likely to be involved in the O2 pressure-dependent regulation of red cell metabolism in late development of avian embryos.

1996 ◽  
Vol 271 (4) ◽  
pp. R982-R989 ◽  
Author(s):  
S. Dragon ◽  
S. Glombitza ◽  
R. Gotz ◽  
R. Baumann

Hypoxia is the stimulus for activation of red cell carbonic anhydrase II (CAII) and 2,3-diphosphoglycerate (2,3-DPG) synthesis of chick red blood cells during late embryonic development. We have tested whether plasma catecholamines are involved as hormonal mediators, because hypoxia is a well-known stimulus for catecholamine release in mammalian fetuses. Plasma catecholamines were measured in 8- to 16-day-old chick embryos. Plasma levels of norepinephrine (NE) were initially low, but its concentration increased rapidly from 2.7 nM (day 12) to 13.4 nM at day 13 and 25.5 nM at day 16. Epinephrine (E) was not detectable before day 13. Short-term hypoxic exposure of day 11 embryos (1-h incubation at 13.5% O2) increased plasma NE concentration fivefold compared with the controls but had no effect on E. During 15-h in vitro incubation of red blood cells from day 11, addition of 1 microM NE to the incubation medium increased the red cell 2,3-DPG concentration nearly threefold and CAII activity sixfold compared with the control. The CAII activity and 2,3-DPG concentration were also increased when cells were incubated with plasma from late chick embryos. The activation was induced by beta-adrenergic stimulation of adenylyl cyclase. Atenolol and propranolol blocked the effects of NE and embryonic chick plasma. Analysis of de novo protein synthesis ([35S]methionine incorporation) demonstrated that catecholamines stimulate the synthesis of several proteins besides CAII. The results indicate that developmental changes of plasma NE concentration are instrumental in the adenosine 3',5'-cyclic monophosphate-dependent activation of CAII and 2,3-DPG synthesis of red blood cells from late chick embryos.


Blood ◽  
1971 ◽  
Vol 38 (4) ◽  
pp. 463-467 ◽  
Author(s):  
STAVROS HAIDAS ◽  
DOMINIQUE LABIE ◽  
JEAN-CLAUDE KAPLAN

Abstract A parallel decline of 2,3-diphosphoglycerate (2,3-DPG) and P50 of intracorpuscular hemoglobin is found in red blood cells during their in vivo aging. After 2,3-DPG depletion due to in vitro storage, the capacity to restore, 2,3-DPG in the presence of inosine is significantly impaired in senescent cells as compared with young cells.


1977 ◽  
Vol 232 (1) ◽  
pp. H79-H84 ◽  
Author(s):  
J. I. Spector ◽  
C. G. Zaroulis ◽  
L. E. Pivacek ◽  
C. P. Emerson ◽  
C. R. Valeri

Baboons were bled one-third their red cell mass and were given homologous transfusions of red blood cells to restore the red cell volume. One group of baboons received red blood cells with a normal 2,3-diphosphoglycerate 2,3-DPG) level and normal affinity for oxygen, and in this group the 2,3-DPG level after transfusion was normal. The other group received red blood cells with a 160% of normal 2,3-DPG level and decreased affinity for oxygen, and in this group the 2,3-DPG level after transfusion was 125% of normal. In both groups of baboons, the inspired oxygen concentration was lowered and arterial PO2 tension was maintained at 55-60 mmHg for 2 h after transfusion. During the hypoxic state, systemic oxygen extraction was similar in the two groups, whereas oxygen saturation was lower in the high 2,3-DPG group than in the control animals. Cardiac output was significantly reduced 30 min after the arterial PO2 was restored to normal. These data indicate that red blood cells with decreased affinity for oxygen maintained satisfactory oxygen delivery to tissue during hypoxia.


1992 ◽  
Vol 99 (5) ◽  
pp. 721-746 ◽  
Author(s):  
H Mairbäurl ◽  
J F Hoffman

This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density-separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship with in vivo differences in MCV. Indirect evidence indicates that the relative cotransport rate, as indexed by Mgifree, is determined by the phosphorylated level of the cotransport system.


1979 ◽  
Vol 236 (5) ◽  
pp. C262-C267 ◽  
Author(s):  
M. J. Seider ◽  
H. D. Kim

Cow red cell glycolysis, which can be stimulated by a variety of purines and pyrimidines, was also found to be elevated by its own plasma. Dialyzed or charcoal-treated plasma could no longer stimulate glycolysis, suggesting that the stimulating factors may be purines or pyrimidines. Determination of purines or pyrimidines in plasma revealed the presence of xanthine (0.31 muM), hypoxanthine (0.60 muM), and adenosine (0.05 muM), as well as unknown compounds. A physiologic level of hypoxanthine, with or without xanthine and adenosine approximating their concentrations in plasma, resulted in the stimulation of cow red cell glycolytic rate by 16% (P less than 0.01). These findings suggest that plasma-borne purines may act on cow red cells in concert with as yet unidentified factors. Moreover, exchanging calf and cow plasmas produced no stimulatory effect on either calf or cow red cell glycolysis, suggesting that a) calf red cells lack some of the cellular components that respond to this stimulator and, b) only cow plasma contains this specific stimulator. In other species, including dog, cat, rabbit, rat, guinea pig, and human, stimulation of glycolysis by plasma was not observed.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4093-4093
Author(s):  
Gyana R. Satpathy ◽  
Zsolt Torok ◽  
Mitali Banerjee ◽  
Rachna Bali ◽  
Erika Little ◽  
...  

Abstract A wide variety of medical procedures require transfusion of red blood cells (RBCs). RBCs are currently preserved either at 4°C, at a higher hematocrit (70%) for up to 7–12 weeks or in a frozen state in the presence of glycerol at −80°C for several years. However, each procedure has its demerits. Storage in the dry state offers a possibility for storing the cells for long periods of time under conditions that are far easier to maintain (i.e. room temperature), making the transport to sites of immediate need feasible. We developed a method for freeze-drying RBCs using 15% hematocrit, resulting in a survival of 40% after rehydration, as assessed by the percent hemolysis. In this work, we report the effect of cell hematocrit, concentration of trehalose, salts and overall osmolality of the freeze-drying medium on the survival after freeze-drying and rehydration. Decreasing the percent hematocrit and trehalose in the freeze-drying buffer resulted in about 20% improvement in the post-rehydration survival. Freeze-dried and rehydrated RBCs showed high levels of ATP, 2,3-DPG and low percent methemoglobin. These data are discussed in terms of the glass transition properties of the freeze-drying buffer. This work provides an important step in formulating a freeze drying medium that will provide optimum RBC survival after freeze drying and rehydration.


1984 ◽  
Vol 247 (1) ◽  
pp. C120-C123 ◽  
Author(s):  
P. B. Dunham ◽  
B. E. Farquharson ◽  
R. L. Bratcher

In the HK-LK polymorphism of sheep red blood cells, alloimmune antiserum against the L antigen on LK cells is known to stimulate the Na+-K+ pump in low K+ (LK) cells, but alloimmune antiserum against the M antigen of high K+ (HK) cells does not. We have shown for the first time that heteroimmune antibodies against sheep red blood cells raised in mice can stimulate the pump. Heteroimmune antibodies against both LK(L) cells and HK(M) cells stimulated active K+ transport in LK cells. Furthermore heteroimmune antibodies against LK(L) cells also stimulated the pump in HK cells. As expected, alloimmune and heteroimmune antibodies acted at different sites in stimulating transport in LK cells.


Sign in / Sign up

Export Citation Format

Share Document