Pentobarbital anesthesia modifies pulmonary vasoregulation after hypoperfusion

1988 ◽  
Vol 255 (3) ◽  
pp. H569-H576
Author(s):  
B. B. Chen ◽  
D. P. Nyhan ◽  
H. M. Goll ◽  
P. W. Clougherty ◽  
D. M. Fehr ◽  
...  

Our objectives were 1) to investigate the extent to which the pulmonary vascular response to increasing cardiac index after a period of hypotension and hypoperfusion (defined as reperfusion) measured in conscious dogs is altered during pentobarbital sodium anesthesia, and 2) to determine whether pentobarbital anesthesia modifies autonomic nervous system (ANS) regulation of the pulmonary circulation during reperfusion. Base-line and reperfusion pulmonary vascular pressure-cardiac index (P/Q) plots were generated by stepwise inflation and deflation, respectively, of an inferior vena caval occluder to vary Q in conscious and pentobarbital-anesthetized (30 mg/kg iv) dogs. During pentobarbital anesthesia, controlled ventilation (without positive end-expiratory pressure) allowed matching of systemic arterial and mixed venous blood gases to conscious values. Marked pulmonary vasoconstriction (P less than 0.01) was observed during reperfusion in pentobarbital-anesthetized but not in conscious dogs. Both sympathetic alpha-adrenergic receptor block and total ANS ganglionic block attenuated, but did not abolish, the pulmonary vasoconstriction during reperfusion in pentobarbital-anesthetized dogs. Neither sympathetic beta-adrenergic receptor block nor cholinergic receptor block enhanced the magnitude of the pulmonary vasoconstrictor response to reperfusion during pentobarbital anesthesia. Thus, in contrast to the conscious state, the pulmonary vascular response to reperfusion is characterized by active, non-flow-dependent pulmonary vasoconstriction during pentobarbital anesthesia. This response is primarily, but not exclusively, mediated by sympathetic alpha-adrenergic vasoconstriction and is not offset by either sympathetic beta-adrenergic or cholinergic vasodilation. These results indicate, that, compared with the conscious state, pentobarbital anesthesia modifies pulmonary vasoregulation, during reperfusion following hypotension and hypoperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

1989 ◽  
Vol 256 (5) ◽  
pp. H1384-H1392 ◽  
Author(s):  
D. P. Nyhan ◽  
H. M. Goll ◽  
B. B. Chen ◽  
D. M. Fehr ◽  
P. W. Clougherty ◽  
...  

We investigated the effects of pentobarbital sodium anesthesia on vasoregulation of the pulmonary circulation. Our specific objectives were to 1) assess the net effect of pentobarbital on the base-line pulmonary vascular pressure-to-cardiac index (P/Q) relationship compared with that measured in conscious dogs, and 2) determine whether autonomic nervous system (ANS) regulation of the intact P/Q relationship is altered during pentobarbital. P/Q plots were constructed by graded constriction of the thoracic inferior vena cava, which produced stepwise decreases in Q. Pentobarbital (30 mg/kg iv) had no net effect on the base-line P/Q relationship. In contrast, changes in the conscious intact P/Q relationship in response to ANS antagonists were markedly altered during pentobarbital. Sympathetic alpha-adrenergic receptor block with prazosin caused active pulmonary vasodilation (P less than 0.01) in conscious dogs but caused vasoconstriction (P less than 0.01) during pentobarbital. Sympathetic beta-adrenergic receptor block with propranolol caused active pulmonary vasoconstriction (P less than 0.01) in both groups, but the magnitude of the vasoconstriction was attenuated (P less than 0.05) during pentobarbital at most levels of Q. Finally, cholinergic receptor block with atropine resulted in active pulmonary vasodilation (P less than 0.01) in conscious dogs, whereas vasoconstriction (P less than 0.01) was observed during pentobarbital. Thus, although pentobarbital had no net effect on the base-line P/Q relationship measured in conscious dogs, ANS regulation of the intact pulmonary vascular P/Q relationship was altered during pentobarbital anesthesia.


1988 ◽  
Vol 254 (5) ◽  
pp. H976-H983
Author(s):  
P. W. Clougherty ◽  
D. P. Nyhan ◽  
B. B. Chen ◽  
H. M. Goll ◽  
P. A. Murray

We investigated the role of the autonomic nervous system (ANS) in the pulmonary vascular response to increasing cardiac index after a period of hypoperfusion (defined as reperfusion) in conscious dogs. Base-line and reperfusion pulmonary vascular pressure-cardiac index (P/Q) plots were generated by stepwise constriction and release, respectively, of an inferior vena caval occluder to vary Q. Surprisingly, after 10-15 min of hypoperfusion (Q decreased from 139 +/- 9 to 46 +/- 3 ml.min-1.kg-1), the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) was unchanged over a broad range of Q during reperfusion compared with base line when the ANS was intact. In contrast, pulmonary vasoconstriction was observed during reperfusion after combined sympathetic beta-adrenergic and cholinergic receptor block, after beta-block alone, but not after cholinergic block alone. The pulmonary vasoconstriction during reperfusion was entirely abolished by combined sympathetic alpha- and beta-block. Although sympathetic alpha-block alone caused pulmonary vasodilation compared with the intact, base-line P/Q relationship, no further vasodilation was observed during reperfusion. Thus the ANS actively regulates the pulmonary circulation during reperfusion in conscious dogs. With the ANS intact, sympathetic beta-adrenergic vasodilation offsets alpha-adrenergic vasoconstriction and prevents pulmonary vasoconstriction during reperfusion.


1987 ◽  
Vol 21 (4) ◽  
pp. 205A-205A
Author(s):  
Daniel P Nyhan ◽  
Bessie B Chen ◽  
Harold M Coll ◽  
Patrick W Clougherty ◽  
Paul A Murray

1990 ◽  
Vol 258 (3) ◽  
pp. H634-H641 ◽  
Author(s):  
N. Gilson ◽  
N. el Houda Bouanani ◽  
A. Corsin ◽  
B. Crozatier

Few models of heart failure (HF) are available for physiological and pharmacological studies. We report here a model of pressure plus volume overload induced in rabbits in which left ventricular (LV) function was studied in the conscious state after instrumentation of the animals with LV pressure catheter and ultrasonic crystals measuring LV diameter. Beta-Adrenoceptors were studied on crude membranes obtained from control (C) and HF rabbits using [3H]CGP 12177. LV weights and end-diastolic diameters were significantly increased in the HF group compared with the C group (by 79 and 38%, respectively). The percentage of diameter systolic shortening was decreased, in the control state, in rabbits with HF (15.3 +/- 1.6%) as compared with C rabbits (29.6 +/- 2.5%) and remained lower in the HF group when end-systolic pressures were matched. Chronotropic response to isoproterenol injection was significantly decreased in rabbits with HF compared with that of C rabbits. Beta-Adrenergic receptor density was decreased in rabbits with HF (39.3 +/- 3.7 fmol/mg) compared with C rabbits (56.7 +/- 4.2 fmol/mg) without affinity changes. This model of chronic HF thus produces a marked hypertrophy with ventricular dilatation and a depression of LV function within 2 mo, factors that are associated with a reduced cardiac responsiveness to catecholamines and a decreased ventricular beta-adrenergic receptor density.


1988 ◽  
Vol 255 (5) ◽  
pp. H1084-H1090
Author(s):  
H. S. Geller ◽  
D. P. Nyhan ◽  
H. M. Goll ◽  
P. W. Clougherty ◽  
B. B. Chen ◽  
...  

Our objective was to investigate the integrated pulmonary vascular response of conscious dogs to combined inhibition of the autonomic nervous system, arginine vasopressin (V1) receptors (vasopressinergic V1), and converting enzyme to identify the overall influence of these three major neurohumoral mechanisms in vascular regulation of the pulmonary circulation. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were generated by graded constriction of the thoracic inferior vena cava, which produced stepwise decreases in Q. When compared with the P/Q relationship measured in intact conscious dogs, combined neurohumoral block resulted in active, nonflow-dependent pulmonary vasodilation. A second objective was to assess the extent to which cyclooxygenase pathway inhibition modified both the intact P/Q relationship and the pulmonary vasodilator response to combined neurohumoral block. Cyclooxygenase inhibition alone (either indomethacin or sodium meclofenamate) resulted in active, nonflow-dependent pulmonary vasoconstriction. Moreover, the pulmonary vasodilation in response to combined neurohumoral block was entirely abolished following cyclooxygenase inhibition. Thus the integrated pulmonary vascular response of conscious dogs to combined neurohumoral block is active vasodilation. This response appears to be mediated by metabolites of the cyclooxygenase pathway.


1993 ◽  
Vol 73 (6) ◽  
pp. 1013-1023 ◽  
Author(s):  
K Kiuchi ◽  
N Sato ◽  
R P Shannon ◽  
D E Vatner ◽  
K Morgan ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. H1473-H1482 ◽  
Author(s):  
M. Iwase ◽  
Y. Ishikawa ◽  
Y. T. Shen ◽  
R. P. Shannon ◽  
N. Sato ◽  
...  

Because major cardiovascular disease states are characterized by defects in adenylyl cyclase regulation, it becomes important to understand the mechanisms by which adenylyl cyclase activators affect inotropy and chronotropy in intact conscious animals. Accordingly, we examined the inotropic and chronotropic responses to forskolin in 11 normal conscious, chronically instrumented dogs and 3 dogs with ventricular denervation (VD). Left ventricular first derivative of pressure (LV dP/dt) increased by 96 +/- 7%, P < 0.05, in response to forskolin (50 nmol.kg-1.min-1) in normal dogs and by significantly less, 52 +/- 14%, in VD dogs. Circulating norepinephrine (NE) levels increased similarly in both groups (from 226 +/- 18 to 389 +/- 33 pg/ml in normal dogs, from 177 +/- 23 to 329 +/- 71 pg/ml in VD dogs). In the presence of ganglionic blockade, the increase in LV dP/dt in response to forskolin was reduced (+62 +/- 4%) in normal dogs but was unchanged in VD dogs (+52 +/- 12%). Ganglionic blockade abolished the increase in circulating NE levels in both groups. Increases in heart rate in the presence of ganglionic blockade (+54 +/- 6 beats/min) were less than in the presence of atropine alone (+92 +/- 10 beats/min). Notably, the LV dP/dt and heart rate responses to forskolin were further attenuated by beta-adrenergic receptor blockade in the presence and absence of ganglionic blockade. Morphine also attenuated the increases in both LV dP/dt and plasma NE in response to forskolin. Increases in LV dP/dt in response to NKH-477 (30 micrograms/kg), a water-soluble forskolin derivative, were similar before and after ganglionic blockade (+63 +/- 8 and +51 +/- 10%, respectively). However, in vitro experiments in LV sarcolemmal membrane preparations demonstrated that stimulation of adenylyl cyclase by forskolin and NKH-477 was not affected by beta-adrenergic receptor blockade. These results indicate that in conscious dogs, inotropic and chronotropic effects of forskolin are not only due to direct activation of adenylyl cyclase, but the effects also are mediated by neural mechanisms and potentiated by the prevailing level of sympathetic tone.


1995 ◽  
Vol 269 (2) ◽  
pp. H491-H503 ◽  
Author(s):  
N. Sato ◽  
Y. T. Shen ◽  
K. Kiuchi ◽  
R. P. Shannon ◽  
S. F. Vatner

We investigated the extent to which sympathomimetic amines induced splenic contraction and associated increases in arterial O2 content (CaO2) and how these mechanisms affected control of the coronary circulation by sympathomimetic amines in conscious dogs. Blood hemoglobin (Hb) and CaO2 increased by 16 +/- 2 and 18 +/- 2%, respectively, during norepinephrine (NE, 0.8 micrograms.kg-1.min-1 iv) in the intact, conscious state after splenic contraction. Phenylephrine (PE) induced similar effects. After either alpha 1-adrenergic-receptor blockade or splenectomy, these effects were abolished. Isoproterenol (Iso) also decreased splenic thickness, which was abolished after ganglionic, alpha-, or beta 1/beta 2-adrenergic-receptor blockade. Direct infusions of NE and PE into the splenic artery decreased splenic thickness and increased Hb and CaO2, whereas Iso had no effect. After splenectomy, NE did not increase CaO2, but coronary blood flow (CBF) increased more (73 +/- 6%) vs. before splenectomy (49 +/- 7%) without any differences before and after splenectomy in the responses of pressures, contractility, and myocardial O2 consumption (MVO2). In contrast, renal, mesenteric, and iliac artery blood flows were not significantly different in response to sympathomimetic amines before and after splenectomy. These data indicate that sympathomimetic amines induced splenic contraction either directly or reflexly via alpha-adrenergic-receptor stimulation. The consequent increase in Hb and CaO2 allows for equivalent increases in MVO2, but at a smaller increase in CBF.


1987 ◽  
Vol 63 (1) ◽  
pp. 145-151 ◽  
Author(s):  
D. P. Nyhan ◽  
P. W. Clougherty ◽  
H. M. Goll ◽  
P. A. Murray

Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140–60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document