Bradykinin actively modulates pulmonary vascular pressure-cardiac index relationships

1987 ◽  
Vol 63 (1) ◽  
pp. 145-151 ◽  
Author(s):  
D. P. Nyhan ◽  
P. W. Clougherty ◽  
H. M. Goll ◽  
P. A. Murray

Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140–60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)

1986 ◽  
Vol 61 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
D. C. Curran-Everett ◽  
K. McAndrews ◽  
J. A. Krasney

The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338–342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37–42 Torr, arterial CO2 tension (PaCO2) = 25–30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19–22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7–10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.


1982 ◽  
Vol 52 (3) ◽  
pp. 705-709 ◽  
Author(s):  
B. R. Walker ◽  
N. F. Voelkel ◽  
J. T. Reeves

Recent studies have shown that vasodilator prostaglandins are continually produced by the isolated rat lung. We postulated that these vasodilators may contribute to maintenance of normal low pulmonary arterial pressure. Pulmonary pressure and cardiac output were measured in conscious dogs prior to and 30 to 60 min following administration of meclofenamate (2 mg/kg iv, followed by infusion at 2 mg . kg-1 . h-1) or the structurally dissimilar inhibitor RO–20–5720 (1 mg/kg iv, followed by infusion at 1 mg . kg-1 . h-1). The animals were also made hypoxic with inhalation of 10% O2 before and after inhibition. Time-control experiments were conducted in which only the saline vehicle was administered. Meclofenamate or RO–20–5720 caused an increase in mean pulmonary arterial pressure and total pulmonary resistance. Cardiac output and systemic pressure were unaffected. The mild hypoxic pulmonary pressor response observed was not affected by meclofenamate. Animals breathing 30% O2 to offset Denver's altitude also demonstrated increased pulmonary pressure and resistance when given meclofenamate. It is concluded that endogenous vasodilator prostaglandins may contribute to normal, low vascular tone in the pulmonary circulation.


1989 ◽  
Vol 67 (1) ◽  
pp. 339-345 ◽  
Author(s):  
B. J. Rubal ◽  
M. R. Geer ◽  
W. H. Bickell

This study examines the effects of inflation of pneumatic antishock garments (PASG) in 10 normovolemic men (mean age 44 +/- 6 yr) undergoing diagnostic catheterization. Seven subjects had normal heart function and no evidence of coronary artery disease (CAD); three patients had CAD. High-fidelity multisensor catheters were employed to simultaneously record right and left heart pressures before PASG inflation and after inflation to 40, 70, and 100 mmHg. A thermal dilution catheter was used to obtain pulmonary capillary wedge pressure and cardiac output. Counterpressure increases greater than or equal to 40 mmHg were associated with significant changes in left and right heart pressures. Right and left ventricular end-diastolic pressures increased 100% (P less than 0.01); mean pulmonary arterial and aortic pressures increased 77 and 25%, respectively (P less than 0.01); systemic vascular resistance increased 22% (P less than 0.05) and pulmonary vascular resistance did not change in normal subjects at maximum PASG inflation. Heart rate, cardiac output, and aortic and pulmonary arterial pulse pressures did not change during inflation in either group. Right and left ventricular end-diastolic pressures and pulmonary capillary wedge pressure were greater (P less than 0.05) in the CAD group compared with the normal subjects during PASG inflation. The data suggest that the primary mechanism whereby PASG inflation induces changes in central hemodynamics in normovolemic subjects is through an acute increase in left ventricular afterload. PASG changes in afterload and pulmonary capillary wedge pressure imply that these devices should be used with caution in patients with compromised cardiac function.


1977 ◽  
Vol 55 (6) ◽  
pp. 1369-1377 ◽  
Author(s):  
Philip J. Kadowitz ◽  
Ernst W. Spannhake ◽  
Stan Greenberg ◽  
Larry P. Feigen ◽  
Albert L. Hyman

The effects of bolus injections of the postaglandin precursor, arachidonic acid, and PGD2, PGF2α, PGE2, and the PGH2 analog ((15S)-hydroxyl-9α,11α(epoxymethano)-prosta-5Z-dienoic acid) were compared on the pulmonary circulation in the intact spontaneously breathing pentobarbital-anesthetized dog. Arachidonic acid increased pulmonary arterial pressure, decreased aortic pressure, and increased cardiac output when injected into the superior vena cava or right atrium. PGE2, like arachidonic acid, increased pulmonary arterial pressure and cardiac output and decreased aortic pressure, whereas PGF2α and PGD2 increased pulmonary arterial pressure but did not affect cardiac output or aortic pressure when injected into the superior vena cava or right atrium. The PGH2 analog increased pulmonary arterial pressure and to a lesser extent, aortic pressure, without affecting cardiac output. None of these substances changed left atrial or right atrial pressure. The cardiopulmonary effects of arachidonic acid were blocked by indomethacin whereas the rise in pulmonary arterial pressure in response to the bisenoic prostaglandins and the analog were enhanced by the cyclooxygenase inhibitor. These data suggest that the increase in pulmonary vascular resistance in response to arachidonic acid may be due to conversion of the precursor into vasoactive intermediates and products such as bisenoic prostaglandins whereas the decrease in systemic vascular resistance is probably due to the formation of PGE2 and other peripheral vasodilator substances.


Sign in / Sign up

Export Citation Format

Share Document